S SYBASE

Java in Adaptive Server® Enterprise

Adaptive Servere Enterprise
Version 12

Document 1D: 31652-01-1200-01
L ast revised: October 1999

Copyright © 1989-1999 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase database management software and to any subsequent release until otherwise indicated in new
editions or technical notes. Information in this document is subject to change without notice. The software descritefiihestiad
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax @15) 229-9

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax numlbrer. All othe
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only atofegnlildety s
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by alectres@os,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server EnterpriserReplicatio
Adaptive Server Everywhere, Adaptive Server |Q, Adaptive Warehouse, AnswerBase, Anywhere Studio, Application Manager,
AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Translator, APT-Library, Backup Server,
ClearConnect, Client-Library, Client Services, Data Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress,
DataServer, DataWindow, DB-Library, dbQueue, Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution
Director, E-Anywhere, E-Whatever, Embedded SQL, EMS, Enterprise Application Server, Enterprise Application Studio, Enterprise
Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work
Architecture, Enterprise Work Designer, Enterprise Work Modeler, EWA, Gateway Manager, ImpactNow, InfoMaker, Information
Anywhere, Information Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for IDBC, KnowledgeBase,
MainframeConnect, Maintenance Express, MAP, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, MySupport,
Net-Gateway, Net-Library, Netimpact, ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit,
Open Client, Open ClientConnect, Open Client/Server, Open Client/Server Interfaces, Open Gateway, Open Server, Open
ServerConnect, Open Solutions, Optima++, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, Power++, power.stop, PowerAMC,
PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerJ, PowerScript,
PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare
Desktop, PowerWare Enterprise, ProcessAnalyst, Report Workbench, Report-Execute, Replication Agent, Replication Driver,
Replication Server, Replication Server Manager, Replication Toolkit, Resource Manager, RW-DisplayLib, RW-Library, S Designor, S
Designor, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script, SQL
Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL
Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL
Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, Sybase Central, Sybase Client/Server Interfaces, Sybase Financial
Server, Sybase Gateways, Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench,
SybaseWare, Syber Financial, SyberAssist, SyBooks, System 10, System 11, System Xl (logo), SystemTools, Tabular Data Stream,
Transact-SQL, Translation Toolkit, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visual
Components, VisualSpeller, VisualWriter, VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse
WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup
SQL Server, XA-Library, XA-Server and XP Server are trademarks of Sybase, Inc. 9/99

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) 2OF2ARS
7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., 6475 Christie Avenue, Emeryville, CA 94608.

Contents

ADOUL THiS BOOK ..uuiiiiiiiiei ittt ettt e st e e e e e et e e e e e s e aan b aeeeaeessaasbaneeeeeasaeesannnees iX
CHAPTER 1 An Introduction to Java in the Databaseccceceevvvieeeeeninnen. 1
Advantages of Java in the Databasecccocoeeiiiiiiniieeiiees 2
Capabilities of Java in the Database..........cccoccoeeeicieeeiniee e 3
Java User-Defined FUNCLIONSccoviiiiiiiiiiiie e 3
Java Classes as Datatypesoccuvvveerieeiiiiiiiieee e esiiieeee e 3
SEANAANAS ... 4
Java in the Database: Questions and ANSWErS...........cccccevevveeeeeeenenn. 5
What Are the Key Features?ccccceviiiiiiieniee i 5
How Can | Store Java Instructions in the Database?................ 5
How Is Java Executed in the Database?.........cccccceeeveeiiieeennee 6
How Can | Use Java and SQL Together?ccccoceeviieeennnnn. 7
What IS the Java API? ... 7
How Can | Access the Java API from SQL?cccceeviiienenns 7
Which Java Classes Are Supported in the Java API?............... 8
Can | Install My Own Java ClasSes?.......ccoccvveeinieeeriieeeeiiiieenn 8
Can | Access Data Using Java?.......ccccccevieeeiiiiiiieniee e 8
Can | Move Classes from Client to Server?ccccccceevviivvneenn. 8
How Do | Use Java Classes in SQL?.......ccoovvvvvviiiiiiiiiiiieeeee. 9
Can | Find More Information About Java in the Database? 9
What You Cannot Do with Java in the Database 9
Sample Java ClasSES........uuuuiiiiiiiiiiiiiiee i 11
CHAPTER 2 Preparing for and Maintaining Java in the Database................. 13
The Java Runtime ENVIrONMENt............cevvieiiiiiiiiieee i 14
Java Classes in the Databasecccccovceeeiiiieer e 14
JDBC DIVEIS....utiiiieei ittt e e e ettt e e e e e st a e e e e s e snraae e e e e e s s annes 15
Enabling the Server for Java.........ccccooieiiiiiii e 16
Disabling the Server for Javacccceviiieiiiiie e 16
Creating Java Classes and JARS.........ccooiiieirieieeiiieee e 17
Writing the Java Codecooiiiiiiiiiiieeeee e 17
Compiling Java Codecooiiiviiiiiieiiiiiiiee e 17

Contents

CHAPTER 3

Saving Classes in @ JAR File ..., 17
Installing Java Classes in the Databasecccccccciiiiiiiiieniennns 19
USING INSEAIJAVA ..vvvviieeiiiiiiiiee i 19
Referencing Other Java-SQL Classescccccoveveeeviieeeennenn. 21
Viewing Information about Installed Classes and JARs................. 22
Downloading Installed Classes and JARS..........cccccceeviiiviiieeeeeennns 23
Removing Classes and JARS........c.ooii i 24
Retaining ClaSSescooiuiiiaiiiie e 24
Using Java Classes in SQL.....cocuiiiiiiiiiiieeiieeee e 25
General ConSIderationscccceeiueieiiiiiee e 26
Java-SQL NaMEScuvuiiie e 26
Using Java Classes as Datatypes........cccvvevveeiiiiiiiiiieeesiniiieeeeeenn 28
Creating Tables with Java-SQL COluMNSccoovcivieeiieeniiiiiieenn. 29
Selecting, Inserting, Updating, and Deleting Java Objects 31
Referencing Java Fields in SQL.........ooocviiiiieiiiniiiiiiiee e 33
Invoking Java Methods in SQLcoovviiiiiiiiiiiiiiiiicee i 34
Sample Methodsocciiiiiiiie e 34
Exceptions in Java-SQL Methodscccccovviiiiiiieeniiiee e 35
Representing Java INStanCeSooeeiiiieriiie e 36
Assignment Properties of Java-SQL Data Iltems...........ccccceeeennene. 37
Datatype Mapping Between Java and SQL Fields.............ccc......... 40
Character Sets for Data and ldentifiers..........cccccooeoeeiiiiineniieennes 41
Subtypes in Java-SQL Data..........cccceviviiiiiiiiieiiiiiiiee e 42
Widening CONVEISIONSccvviviiiieeiiiiiiiiiee e ssiiieee e 42
Narrowing CONVEISIONScoovuvviiiieeesiiiiiieeree e ssiirieeeee e e eeenes 42
Runtime vs. Compile-Time Datatypes........ccccccvvvvviieerieeniiiinnns 43
The Treatment of Nulls in Java-SQL Datacoooeeeeeee. 45
References to Fields and Methods of Null Instances............... 45
Null Values as Arguments to Java-SQL Methods.................... 46

Null Values When Using the SQL convert Function................ 47
Java-SQL StriNg Dataccceeeiiueiieiiiiiee e 48
Zero-Length StriNgS......ccceeoiiii e 48
Type and Void Methodsccocoiiiiiiiiee e 49
Java Void Instance Methodscccoooieiiiiie i 49
Java Void Static Methods..........ccoovviiiiiiieeiiec e 51
Equality and Ordering OperationsS.........ccuveveeiiiiiiieeieeesinniiieeneeeenns 52
Call-by-Reference for Java Methods............cccceveeeviiiiiiiiee e, 53
COIUMNS L.t 53
Variables and Parameters..........coocvvveiieeeiniiee e 54
Static Variables in Java-SQL Classes...........cccccceeeeeiieeieeeeee, 55
Java Classes in Multiple Databasescccccooceeeiiiieeiiieenieenn. 56
S]eo] o1 T TP P PP PP POPPPPPRPN 56
Cross-Database References........ccccovvveeeiiieieniiiee e 56

Contents

INter-Class Transfers.........oi oo 57
Passing Inter-Class ArgumentS..........coooiueeeriiereeniieeeeniieeenne 58
Temporary and Work Databasescccccocoeeinieieiienennne, 58
SaMPle JAVa ClaSSES......uiiiiiiiiiiiiiee st 60
CHAPTER 4 Data Access USiNg JDBC.......ccuiiiiiiiiiiie et 65
OVEIVIBW ...ttt ettt e e 66
JDBC Concepts and Terminologyc..couviuvrieeeeeiiniiiieeieesssniieeees 67
Differences Between Client- and Server-Side JDBC 68
Connections and PermiSSiONS...........ceeerivieiiiiieeiiieees e 69
Using JDBC t0 ACCESS Dataccvvevviiiiiiiiiiieiiiiiiiiiiie e ssiiiieee e 70
Overview of the JIDBCExamples Classccccocveevcveeeencenennn. 70
The main() and serverMain() Methodscccccoeeiieeernnne. 71
Obtaining a JDBC Connection: the Connecter() Method 72

Routing the Action to Other Methods: the doAction() Method 73
Executing Imperative SQL Operations: the doSQL() Method 73
Executing an update Statement: the UpdateAction() Method 73

Executing a select Statement: the selectAction() Method....... 74
Calling a SQL Stored Procedure: the callAction() Method 75
The IDBCEXamPIes ClassS........cccuuviiiieeiiiiiiiiiiie st 77
The main() Method ... 77
The internalMain() Methodccccccovviiiiieii i, 77
The connecter() Methodcccccveiiiiiiiiiei e, 78
The doAction() Method.........ccoviriiiii e 79
The doSQL() Method........cooiiiiiiiiiee e 80
The updateAction() Method..........ccccooiiiiiiiiee 80
The selectAction() Methodccocoviiiiiniieee e 81
The callAction() Method ..o 81
CHAPTER 5 XML in the Database.......cccueeiiiiieii e 83
INEFOAUCTION L.eeeieee e e e e e rre e e e e e e nnes 84
Source Code and JavadoCceeeeiiiieeeiiiee e 84
REFEIENCES ...t 84

AN OVErview Of XML.......ccovviiiiiiieiiiie e 86
Using XML in the Adaptive Server Database.............ccccoecvvvverrennnn. 92
Mapping and STOrageeeevveeiiiiiiiiiiee i 92
Client or Server Considerationsccccoevveeiiieieniiineee e 93
AccessiNg XML iN SQL...uuuviiiiiiiiiiiieee i siiieee e e 94
XML PaISEIS. .. ettt e 95

A Simple Example for a Specific Result Setcocccceeiiiiiennne. 97
The OrderXml Class for Order Documentsccccoccueeeenee. 97
Creating and Populating SQL Tables for Order Data............ 100
Using the Element Storage Technique...........ccccoevceeeiiieenne 102

Contents

Using the Document Storage Techniquecccooccvvvieeneennn. 105
Using the Hybrid Storage Techniquecccccceevviiiiiieeneennn, 110

A Customizable Example for Different Result Sets...................... 112
The ResultSet DOCUMENt TYPE ...couveeeiiiieeeiiiieeecieee e 112
The ResultSetXml Class for Result Set Documents 116
Using the Element Storage Technique...........ccccoevceeeniieenne 120
Using the Document Storage Techniquecccoccoeeevnneenn. 123
Using the Hybrid Storage Techniqueccocccceeivceeennneen. 130
XML ResultSet Documents: Invalid XML Characters............ 130
CHAPTER 6 Debugging Java in the Databasecccccccevviiiiiiiniiiice e, 137
Introduction to Debugging Javaccccvveeeiiiiiiiiiiie e, 138
How the Debugger WOorkscccvveviiiiiiiiiiin e 138
Requirements for Using the Java Debuggerccccccevvunns 138
What You Can Do with the Debuggerccccvvvvviiiiiiiinnnen. 138
USiNg the DEDUGOET ...vvviiiiiiiiiiiiee et 140
Starting the Debugger and Connecting to the Database....... 140
Compiling Classes for Debuggingccooceeeeirireeiiieeennnn. 140
Attaching to @ Java VMcccciiiiiiiiiiiee e 141
The Source WiNAOWcooiiiieiiiiiee e 141

L0 o] o] o 1S3 RS RR 142
Setting Breakpointscooveiiiiiiiee e 143
Disconnecting from the Databasecccoccoveviieeeiiieeenne 146

A Debugging TULONAloouviiiieeiiiiiiencee e 147
Before YOU BegiNcovvviiiieiiiiiiiiceee e 147
Start the Java Debugger and Connect to the Database........ 147
Attach to @ Java VMceeiiiiiiiiiiee e 148
Load Source Code into the Debugger.........cccccvvvvviieeeeeinnnns 148
Step Through Source Code..........coovvviiiiieeiiiiiiiiiiie e, 149
Inspecting and Modifying Variables.............cccccoiiiiiinnnnnne 150
CHAPTER 7 RefErenCe TOPICS ..coiii it 153
ASSIONMENTS ...ttt e e e e e e e e anaeeeeeneeeens 154
Assignment Rules at Compile-Timeccoccceeviiieeeiiieeenes 154
Assignment Rules at RUNLIMEc..ooiiiiiiriiiiee e 154
AlloWed CONVEISIONS......cciiiiiieiiiiie it eeatie e e eiee e eeeeeeeeeeeeeeeeeas 156
Transferring Java-SQL Objects to Clients..........cccccoeeeviieeeiinenen. 157
Supported Java API Packages, Classes, and Methods............... 158
Supported Java Packages and Classes.........cccccceeviivvveeennn. 158
Unsupported Java Packagesccccccvveeiviiiiiiieeesiiiiiieecaeens 159
Unsupported java.sql Methods.........cccccevviiiiiiieeeiiiiiiiieceeenn 159
INVOKING SQL from JaVa........c.cevveieiiiiiiiiiiie i 161
Special Considerations..........ccccvvviiiiieiiee e 161

Vi

Contents

Glossary

INDEX

Transact-SQL Commands from Java Methods...................... 161

Datatype Mapping Between Java and SQLc..cccuvveeee. 166

Java-SQL 1dentifiers...... ..o 168
Java-SQL Class and Package Names..........cccccceeviviiviienneenniinns 169
Java-SQL Column Declarations............eeeeeeeeeeeeeeeeeeeeeeieeeeeeeeeeeeenn 170
Java-SQL Variable Declarations...........cccccvvvveveeiiiiiiiiiiiieeeieeeeee, 171
Java-SQL Column REfErenCesuuveeeveeveeiiiiieieeeeeeeeeeeeeeeeeee e 172
Java-SQL Member ReferencCes........uuuvveveeveviiiiiiieeieeeeeeeeeeeeeeeeee 173
Java-SQL Method CallScooovvvvviiiiiiiii, 175
.. 177

Vii

Viii

About This Book

Audience

How to use this book

Related documents

Thisbook describes how to install and use Java classes and methodsin the
Sybase® Adaptive Server® Enterprise database.

This book is for Sybase System Administrators, Database Owners, and
users who are familiar with the Java programming language and Transact-
SQL®, the Sybase version of Structured Query Language (SQL).

This book will assist you in installing, configuring, and using Java classes
and methods in the Adaptive Server database. It includes these chapters:

* Chapter 1, “An Introduction to Java in the Database” provides an
overview of Java in Adaptive Server, including a Questions and
Answers section for both novice and experienced Java users.

* Chapter 2, “Preparing for and Maintaining Java in the Database”
describes the Java runtime environment and the steps for enabling
Java on the server and installing Java classes.

e Chapter 3, “Using Java Classes in SQL" describes how to use Java-
SQL in your Adaptive Server database.

e Chapter 4, “Data Access Using JDBC” describes how you use a
JDBC driver (on the server or on the client) to perform SQL
operations in Java.

* Chapter 5, “XML in the Database” describes how you can use Javato
access Extensible Markup Language (XML) documents from an
Adaptive Server database.

* Chapter 6, “Debugging Java in the Database” describes how you use
the Sybase debugger with Java.

« Chapter 7, “Reference Topics” provides information about datatype
mapping, Java-SQL syntax, and other useful information.

In addition, a glossary provides descriptions of Java and Java-SQL terms
used in this book.

The following documents comprise the Sybase Adaptive Server
Enterprise documentation:

TheRelease Bulletin for your platform — contains last-minute information
that was too late to be included in the books.

A more recent version of tHeelease Bulletin may be available on the

World Wide Web. To check for critical product or document information
that was added after the release of the product CD, use SyBooks™-on-the-
Web.

The Adaptive Server installation documentation for your platform —
describes installation and upgrade procedures for all Adaptive Server and
related Sybase products.

What's New in Adaptive Server Enterpriseiescribes the new features
in Adaptive Server release 12.0, the system changes added to support
those features, and the changes that may affect your existing applications.

Transact-SQL User’s Guidedocuments Transact-SQL", Sybase’s
enhanced version of the relational database language. This manual serves
as a textbook for beginning users of the database management system.
This manual also contains descriptions offhles2 andpubs3 sample
databases.

System Administration Guideprovides in-depth information about
administering servers and databases. This manual includes instructions
and guidelines for managing physical resources, security, user and system
databases, and specifying character conversion, international language,
and sort order settings.

Adaptive Server Reference Manual — contains detailed information about

all Transact-SQL commands, functions, procedures, and datatypes. This
manual also contains a list of the Transact-SQL reserved words and
definitions of system tables.

Performance and Tuning Guide — explains how to tune Adaptive Server

for maximum performance. This manual includes information about
database design issues that affect performance, query optimization, how to
tune Adaptive Server for very large databases, disk and cache issues, and
the effects of locking and cursors on performance.

TheUtility Programs manual for your platform — documents the Adaptive
Server utility programs, such &sjl andbcp, which are executed at the
operating system level.

Error Messages and Troubleshooting Guide — explains how to resolve
frequently occurring error messages and describes solutions to system
problems frequently encountered by users.

About This Book

Other sources of
information

Sybasecertifications
on the web

Component Integration Services User’s Guide for Adaptive Server
Enterprise and OmniConnectexplains how to use the Adaptive Server
Component Integration Services feature to connect remote Sybase and
non-Sybase databases.

Using Sybase Failover in a High Availability Systeprevides
instructionsfor using Sybase’s Failover to configuring an Adaptive Server
as acompanion server in ahigh availability system.

Using Adaptive Server Distributed Transaction Management Features —
explains how to configure, use, and troubleshoot Adaptive Server DTM
Features in distributed transaction processing environments.

Adaptive Server Glossarydefinestechnical terms used in the Adaptive
Server documentation.

Use the Sybase Technical Library CD and the Technical Library Product
Manuals web site to learn more about your product:

Technical Library CD contains product manuals and technical documents
and is included with your software. The DynaText browser (included on
the Technical Library CD) allows you to access technical information
about your product in an easy-to-use format.

Refer to theTechnical Library Installation Guide in your documentation
package for instructions on installing and starting Technical Library.

Technical Library Product Manuals web site is an HTML version of the
Technical Library CD that you can access using a standard web browser.
In addition to product manuals, you'll find links to the Technical
Documents web site (formerly known as Tech Info Library), the Solved
Cases page, and Sybase/Powersoft newsgroups.

To access the Technical Library Product Manuals web site, Bathuct
Manuals at http://sybooks.sybase.com.

Technical documentation at the Sybase web site is updated frequently.

For the latest information on product certifications and/or the EBF

Rollups:

1 Point your web browser fiechnical Documents at
http://techinfo.sybase.com.

2 Inthe Browse section, click on What's Hot.

3 Select links to Certification Reports and EBF Rollups, as well as links to

Technical Newsletters, online manuals, and so on.

Xi

Java syntax
conventions

Xii

If you are aregistered SupportPlus user:

1 Point your web browser to Technical Documents at
http://techinfo.sybase.com.

2 In the Browse section, click on What's Hot.
3 Click on EBF Rollups.

You can research EBFs using Technical Documents, and you can
download EBFs using Electronic Software Distribution (ESD).

4 Follow the instructions associated with the SupporﬁML@nline
Services entries.

If you are not aregistered SupportPlus user, and you want to become
one:

You can register by following the instructions on the Web.
To use SupportPlus, you need:

1 A Web browser that supports the Secure Sockets Layer (SSL), such as
Netscape Navigator 1.2 or later

2 An active support license
A named technical support contact
4 Your user ID and password

Whether or not you are a registered SupportPlus user:

You may use Sybase’s Technical Documents. Certification Reports are among
the features documented at this site.

1 Point your web browser fiechnical Documents at
http://techinfo.sybase.com

2 In the Browse section, click on What's Hot.
3 Click on the topic that interests you.
This book uses these font and syntax conventions for Java items:

e Classes, interfaces, methods, and packages are shown in bold Helvetica
within paragraph text. For example:

SybConnection class
SybEventHandler interface

setBinaryStream() method

About This Book

com.Sybase.jdbx package

« Objects, instances, and parameter names are shown in italics. For
example:

“In the following examplectx is aDirContext object.”

“eventHdler is an instance of th&ybEventHandler class that you
implement.”

“The classes parameter is a string that lists specific classes you want to
debug.”

e Java names are always case sensitive. For example, if a Java method name
is shown asfisc.stripLeadingBlanks(), you must type the method name
exactly as displayed.

Transact-SQL syntax This book uses the same font and syntax conventions for Transact-SQL as
conventions other Adaptive Server documents:

« Command names, command option names, utility names, utility flags, and
other keywords are in bold Helvetica in paragraph text. For example:

select command
isql utility
-f flag
* Variables, or wordsthat stand for valuesthat youfill in, areinitalics. For example:
user_name
server_name

e Code fragments are shown in a monospace font.Variables in code
fragments (that is, words that stand for values that you fill in) are italicized.
For example:

Connection con = DriverManager. get Connecti on
("j dbc: sybase: Tds: host: port", props);

* You can disregard case when typing Transact-SQL keywords. For
example SELECT, Select, andselect are the same.

Additional conventions for syntax statements in this manual are described in
Table 1. Examples illustrating each convention can be found fByshesn
Administration Guide.

Xiii

If you need help

Xiv

Table 1: Syntax statement conventions

Key Definition
{1} Curly braces indicate that you choose at |east one of the enclosed
options. Do not include bracesin your option.
[] Brackets mean choosing one or more of the enclosed optionsis
optional. Do not include brackets in your option.
() Parentheses are to be typed as part of the command.

[The vertical bar means you may select only one of the options
shown.
The comma means you may choose as many of the options shown
asyou like, separating your choices with commas to be typed as
part of the command.

Each Sybaseinstallation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
inyour area.

CHAPTER 1

An Introduction to Java in the
Database

This chapter provides an overview of Java classes in Adaptive Server
Enterprise.

These topics are discussed:

Name Page
Advantages of Javain the Database 2
Capabilities of Javain the Database 3
Standards 4
Javain the Database: Questions and Answers 5
Sample Java Classes 1

Advantages of Java in the Database

Advantages of Java in the Database

Adaptive Server provides a runtime environment for Java, which means that
Java code can be executed in the server. Building a runtime environment for
Javain the database server provides powerful new ways of managing and
storing both data and logic.

You can use the Java programming language as an integral part of
Transact-SQL.

You can reuse Java code in the different layers of your application—client,
middle-tier, or server—and use them wherever makes most sense to you.

Java in Adaptive Server provides a more powerful language than stored
procedures for building logic into the database.

Java classes become rich, user-defined data types.
Methods of Java classes provide new functions accessible from SQL.

Java can be used in the database without jeopardizing the integrity,
security, and robustness of the database. Using Java does not alter the
behavior of existing SQL statements or other aspects of non-Java
relational database behavior.

CHAPTER 1 An Introduction to Java in the Database

Capabilities of Java in the Database

Javain Adaptive Server provides these functionalities:
» Java user-defined functions (UDFs)

« Java classes as datatypes in SQL

Java User-Defined Functions

You can install Java classes in the Adaptive Server database, and then invoke
the methods of those classes, both from within the SQL system and from client
systems.

The methods of an object-oriented language correspond to the functions of a
procedural language. You can invoke Java methods as UDFs in, for example,
select lists andwhere clauses. You can use methods from other sources or
methods you create and test.

Java Classes as Datatypes

With Java in the database, you can install pure Java classes in a SQL system,
and then use those classes in a natural manner as datatypes in SQL. This
capability adds a full object-oriented datatype extension mechanism to SQL,
using a model that is widely understood and a language that is portable and
widely available. The objects that you create and store with this facility are
readily transferable to any Java-enabled environment, either in another SQL
system or stand-alone Java environment.

This capability of using Java classes in the database has two different but
complementary uses:

e It provides a type extension mechanism for SQL, which you can use for
data that is created and processed in SQL.

« It provides a persistent data capability for Java, which you can use to store
data in SQL that is created and processed (mainly) in Java. Java in
Adaptive Server provides a distinct advantage over traditional SQL
facilities: You do not need to map the Java objects into scalar SQL data
types or store the Java objects as untyped binary strings.

Standards

Standards

The SQLJ consortium of SQL vendors is developing specifications for using
Javawith SQL. The consortium submits these specifications to ANSI for
formal processing as standards.

The SQL J specifications are divided into three parts:

¢ Part 0 — specifications for embedding SQL statements in Java methods,
similar to the traditional SQL facilities for embedded SQL in COBOL and
C and other languages. The Java classes containing embedded SQL
statements are precompiled to pure Java classes with JDBC calls.

» Part1- specifications for installing Java classes in a SQL system, and for
invoking Java static methods as SQL stored procedures and functions.

» Part 2 — specifications for using Java classes as SQL datatypes.

You can use methods and classes using the Part O specifications with Java in
Adaptive Server.

Java in Adaptive Server provided the basis for Parts 1 and 2. However, Java in
Adaptive Server allows you to use Java hames directly in SQL, whereas SQLJ
Parts 1 and 2 currently require that you use the G@dte statement to define

SQL aliases for Java method and class names. Java in Adaptive Server will
support the SQLJ Parts 1 and 2 specifications when they are finalized.

CHAPTER 1 An Introduction to Java in the Database

Java in the Database: Questions and Answers

Although this book assumes that readers are familiar with Java, thereis much
to learn about Javain adatabase. Sybase is not only extending the capabilities
of the database with Java, but also extending the capabilities of Java with the
database.

Both experienced and novice Java users should read this section. It uses a
question-and-answer format to familiarize you with the basics of Javain
Adaptive Server.

What Are the Key Features?

All of these points are explained in detail in later sections. With Javain
Adaptive Server, you can:

Run Java in the database server using an internal Java Virtual Machine
(Java VM).

Call Java functions (methods) from SQL statements.
Access data from Java using an internal JDBC driver.
Use Java classes as datatypes.

Save instances of Java objects in tables.

Generate XML-formatted documents from data stored in Adaptive Server
databases and, conversely, store XML documents and data extracted from
them in Adaptive Server databases.

Debug Java in the database.

Preserve the behavior of existing SQL statements and other aspects of
non-Java relational database behavior.

How Can | Store Java Instructions in the Database?

Java is an object-oriented language, so its instructions (source code) come in
the form of classes. You write and compile the Java instructions outside the
database into compiled classes (byte code), which are binary files holding Java
instructions.

You then install the compiled classes into the database, where they can be
executed in the database server.

Java in the Database: Questions and Answers

Adaptive Server is aruntime environment for Java classes. You need a Java
development environment, such as Sybase PowerJ™ or Sun Microsystems
Java Development Kit (JDK), to write and compile Java.

How Is Java Executed in the Database?
To support Java in the database, Adaptive Server:

e Comes with its own Java VM, specifically developed for handling Java
processing in the server.

*« Uses its own JDBC driver that runs in the server and accesses a database.

The Sybase Java VM runs in the database environment. It interprets compiled
Java instructions and runs them in the database server.

The Sybase Java VM meets the JCM specifications from JavaSoft; it is
designed to work with the 1.1.6 version of the Java API. It supports public class
and instance methods; classes inheriting from other classes; the Java API; and
access t@rotected, public, andprivate fields. Some Java API functions not
appropriate in a server environment, such as user interface elements, are not
supported. All supported Java API packages and classes come with Adaptive
Server.

The Adaptive Server Java VM is available at all times to perform a Java
operation whenever it is required as part of the execution of a SQL statement.
The database server starts the Java VM automatically when it is needed; you
do not need to take any explicit action to start or stop the Java VM.

Client- and Server-Side JDBC
JDBC is the industry standard API for executing SQL in Java.

Adaptive Server provides its own server-side JDBC driver. This driver is
designed to maximize performance as it executes on the server because it does
not need to communicate across the network. This internal driver permits Java
classes installed in a database to use JDBC classes that execute SQL
statements.

When JDBC classes are used within a client application, you typically must use
jConnect® for JDBC™, the Sybase client-side JDBC database driver, to
provide the classes necessary to establish a database connection.

CHAPTER 1 An Introduction to Java in the Database

How Can | Use Java and SQL Together?

A guiding principle for the design of Javain the database is that it provides a
natural, open extension to existing SQL functionality.

« Java operations areinvoked from SQL— Sybase has extended the range of
SQL expressions to include fields and methods of Java objects, so that
Java operations can be included in a SQL statement.

» Java classes become user-defined datatypes — You store Java classes using
the same SQL statements as those used for traditional SQL datatypes.

You can use classes that are part of the Java APl and classes created and
compiled by Java developers. The Java API classes are created and compiled
by Sun Microsystems and by Sybase.

What Is the Java API?

The Java Application Programmer’s Interface (API) is a set of classes defined
by Sun Microsystems. It provides a range of base functionality that can be used
and extended by Java developers. It is the core of “what you can do” with Java.

The Java API offers considerable functionality in its own right. A large portion
of the Java API is built in to any database that is enabled to use Java code—
which includes the majority of non-visual classes from the Java API already
familiar to developers using the Sun Microsystems JDK.

You can use the Java APl in classes, in stored procedures, and in SQL
statements. You can treat the Java API classes as extensions to the available
built-in functions provided by SQL.

How Can | Access the Java API from SQL?

You can use the Java APl in classes, in stored procedures, and in SQL
statements. You can create the Java API classes as extensions to the available
built-in functions provided by SQL.

For example, the SQL function PI(*) returns the value for Pi. The Java API
clasgava.lang.Math has a parallel field nam& that returns the same value.
Butjava.lang.Math also has a field namétthat returns the base of the natural
logarithm, as well as a method that computes the remainder operation on two
arguments as prescribed by the IEE754 standard.

Java in the Database: Questions and Answers

Which Java Classes Are Supported in the Java API?

Not all Java API classes are supported in the database. Some classes, for
example the java.awt package that contains user interface components for
applications, is not appropriate inside a database server. Other classes,
including part of java.io, deal with writing information to adisk, and thisalso
is not supported in the database server environment.

Can I Install My Own Java Classes?

You can install your own Java classesinto the database as, for example, a user-
created Employee class or Inventory class that a developer designed, wrote,
and compiled with a Java compiler.

User-defined Java classes can contain both information and methods. Once
installed in a database, Adaptive Server lets you use these classesin al parts
and operations of the database and execute their functionality (in the form of
class or instance methods) as easily as calling a stored procedure.

Can | Access Data Using Java?

The JDBC interface is an industry standard designed to access database
systems. The JDBC classes are designed to connect to a database, request data
using SQL statements, and return results that can be processed in the client
application.

You can connect from a client application to Adaptive Server Enterprise via
JDBC, using jConnect or a JDBC/ODBC bridge. Adaptive Server also
provides an internal JDBC driver, which permits Java classesinstalled in a
database to use JDBC classes that execute SQL statements.

Can | Move Classes from Client to Server?

The Javain Adaptive Server design allows you to create Java classes that can
be moved between levels of an enterprise application: The same Java class can
be integrated into either the client application, amiddle tier, or the database.

CHAPTER 1 An Introduction to Java in the Database

How Do | Use Java Classes in SQL?

Using Java classes, whether user-defined or from the Java APl, in SQL isa
three-step activity:

1 Wiriteor acquire aset of Java classes that you want to use as SQL
datatypes.

2 Install those classes in the Adaptive Server database.
3 Usethoseclassesin SQL code:
e Call class (static) methods of those classes as UDFs.

« Declare the Java classes as datatypes of SQL columns, variables, and
parameters. In this book, they are called Java-SQL columns,
variables, and parameters.

* Reference the Java-SQL columns, their fields, and their methods.

Can | Find More Information About Java in the Database?

There are many books about Java and Java in the database. Two particularly
useful books are:

« James Gosling, Bill Joy, and Guy Stedlke Java Language
Specification, Addison-Wesley, 1996.

e Graham Hamilton and Rick CattelDBC: A Java QL API, Version 1.20,
JavaSoft, January 10, 1997.

What You Cannot Do with Java in the Database

Adaptive Server is a runtime environment for Java classes, not a Java
development environment.

You cannot carry out these tasks in the database:
« Edit class source fileg fava files).
* Compile Java class source filégdva files).

e Execute Java APIs that are not supported, such as applet and visual
classes.

In this release of Adaptive Server, certain other restrictions apply:

Java in the Database: Questions and Answers

10

If a Java method accesses the database through JDBC, result-set values are
availableonly to the Java method, not to the client application.

Output parameters are not supported. A method can manipulate the data it
receives from a JDBC connection, but the only value it can return to its
caller is a single return value declared as part of its definition.

CHAPTER 1 An Introduction to Java in the Database

Sample Java Classes

The chapters of this book use simple Java classes to illustrate basic principles
for using Java in the database. You can find copies of these classesin the
chapters that describe them and in the Sybase release directory in
$SYBASE/$SYBASE_ASE/sample/JavaSyl (UNIX) or %SYBASEY\Ase-

12 O\sample\davasgl (Windows NT). This subdirectory also contains Javadoc
facilities so that you can view specifications about sample classes and methods
with your Web browser.

11

Sample Java Classes

12

CHAPTER 2

Preparing for and Maintaining
Java in the Database

This chapter describes the Java runtime environment, how to enable Java
on the server, and how to install and maintain Javaclassesin the database.

These topics are discussed:

Name Page
The Java Runtime Environment 14
Enabling the Server for Java 16
Creating Java Classes and JARs 17
Installing Java Classes in the Database 19
Viewing Information about Installed Classes and JARS 22
Downloading Installed Classes and JARs 23
Removing Classes and JARs 24

13

The Java Runtime Environment

The Java Runtime Environment

The Adaptive Server runtime environment for JavarequiresaJavaVM, which
isavailable as part of the database server, and the Sybase runtime Java classes,
or Java API. If you are running Java applications on the client, you may aso
require the Sybase JDBC driver, jConnect, on the client.

Java Classes in the Database
You can use either of the following sources for Java classes:
¢ Sybase runtime Java classes

¢ User-defined classes

Sybase Runtime Java Classes

The Sybase Java VM supports a subset of JDK version 1.1.6 (UNIX and
Windows NT) classes and packages.

The Sybase runtime Java classes are the low-level classes installed to Java-
enable a database. They are downloaded when Adaptive Server is installed and
are available thereafter frofR8YBASE /$SYBASE_ASE/lib/runtime.zip

(UNIX) or %SYBASEY\%SYBASE ASE%\lib\runtime.zip (Windows NT).

You do not need to set the CLASSPATH environment variable specifically for
Java in Adaptive Server.

Sybase does not support runtime Java packages and classes that assume a
screen display, deal with networking and remote communications, or handle
security. See Chapter 7, “Reference Topics” for a list of supported and not-
supported packages and classes.

User-Defined Java Classes

You install user-defined classes into the database usingstiaéjava utility.
Once installed, these classes are available from other classes in the database
and from SQL as user-defined datatypes.

14

CHAPTER 2 Preparing for and Maintaining Java in the Database

JDBC Drivers

The Sybase internal JDBC driver that comes with Adaptive Server supports
JDBC version 1.1.

If your system requires a JDBC driver on the client, you must use jConnect
version 4.1, which also supports JDBC version 1.1.

15

Enabling the Server for Java

Enabling the Server for Java

To enable the server and its databases for Java, enter this command fromisql:
sp_configure “enable java”, 1
Then shutdown and reboot the server.

By default, Adaptive Server isnot enabled for Java. You cannot install Java
classes or perform any Java operations until the server is enabled for Java.

You can increase or decrease the amount of memory available for Javain
Adaptive Server and optimize performance using the sp_configure system
procedure. Java configuration parameters are described in the System
Administration Guide.

Disabling the Server for Java

16

To disable Javain the database, enter this command fromisgl:

sp_configure “enable java”, 0

CHAPTER 2 Preparing for and Maintaining Java in the Database

Creating Java Classes and JARs

The Sybase-supported classes from the JDK areinstalled on your system when
youinstall Adaptive Server version 12 or later. This section describesthe steps
for creating and installing your own Java classes.

To make your Java classes (or classes from other sources) available for usein
the server, follow these steps:

1 Writeand save the Java code that defines the classes.

2 Compilethe Javacode.

3 Create Javaarchive (JAR) files to organize and contain your classes.
4 |Instal the JARS/classes in the database.

Writing the Java Code

Use the Sun Java SDK or a development tool such as Sybase PowerJ to write
the Java code for your class declarations. Save the Java code in afile with an
extension of .java. The name and case of the file must be the same as that of
the class.

Note Make certain that any Java APl classes used by your classes are among
the supported API classes listed in Chapter 7, “Reference Topics”.

Compiling Java Code

This step turns the class declaration containing Java code into a new, separate
file containing byte code. The name of the new file is the same as the Java code
file but has an extension alass. You can run a compiled Java class in a Java
runtime environment regardless of the platform on which it was compiled or
the operating system on which it runs.

Saving Classes in a JAR File

You can organize your Java classes by collecting related classes in packages
and storing them in JAR files.

17

Creating Java Classes and JARs

18

Toinstall Javaclassesin adatabase, the classes or packages must first be saved
inaJAR file, in uncompressed form. To create an uncompressed JAR file that
contains Java classes, use the Javajar ¢f0 command.

InthisUNIX example, thejar command creates an uncompressed JAR file that
contains all .classfilesin the jcsPackage directory:

jar cf0O jcsPackage.jar jcsPackage/*.cl ass
Note that the “0” ircf0 is “zero.”

JAR files allow you to install or remove related classes as a group.

CHAPTER 2 Preparing for and Maintaining Java in the Database

Installing Java Classes in the Database

To install Java classes from aclient operating system file, use theinstalljava
(UNIX) or instjava (Windows NT) utility from the command line.

Refer to Adaptive Server Utilities Programs for your platform for detailed
information about these utilities. Both utilities perform the same tasks; for
simplicity, this document uses UNIX examples.

Using installjava

installjava copies a JAR fileinto the Adaptive Server system and makes the
Java classes contained in the JAR available for usein the current database. The
syntax is:

installjava

-f file_name
[-new | -update]
[-] jar_name]

For example, to install classesin the addr.jar file, enter:

installjava -f “/home/useraljars/addr.jar”

The —f parameter specifies an operating system file that contains a JAR. You
must use the complete path name for the JAR.

This section describes retained JAR files (using -j) and updating installed JARs
and classes (using new and update). For more information about these and the
other options available with installjava , see the Utility Programs manual for
your platform.

Retaining the JAR File

When aJAR isinstalled in a database, the server disassembles the JAR,
extracts the classes, and stores them separately. The JAR is not stored in the
database unless you specify installjava with the -j parameter.

Use of -j determines whether the Adaptive Server system retains the JAR
specified ininstalljava or uses the JAR only to extract the classes to be
installed.

If you do not specify thg parameter, the Adaptive Server system does not
retain any association of the classes with the JAR. This is the default
option.

19

Installing Java Classes in the Database

If you do specify thej parameter, Adaptive Server installs the classes
contained in the JAR in the normal manner, and then retains the JAR and
its association with the installed classes.

If you retain the JAR file:

You can remove the JAR and all classes associated with it, all at once, with
theremove java statement. Otherwise, you must remove each class or
package of classes one at a time.

Other systems may request that the class associated with a given Java
column be downloaded with the column value. If a class retains its
association with the JAR, the Adaptive Server system can download the
JAR, rather than individual classes.

Updating Installed Classes

Thenew andupdate clauses ofnstalljava indicate whether you want new
classes to replace currently installed classes.

20

If you specifynew, you cannot install a class with the same name as an
existing class.

If you specifyupdate, you can install a class with the same name as an
existing class, and the newly installed class replaces the existing class.

Warning! If you alter a class used as a column datatype by reinstalling a
modified version of the class, make sure that the modified class can read
and use existing objects (rows) in tables using that class as a datatype.
Otherwise, you may be unable to access existing objects without
reinstalling the class.

Substitution of new classes for installed classes depends also on whether the
classes being installed or the already installed classes are associated with a
JAR. Thus:

If you update a JAR, all classes in the existing JAR are deleted and
replaced with classes in the new JAR.

A class can only be associated with a single JAR. You cannot install a class
in one JAR if a class of that same name is already installed and associated
with another JAR. Similarly, you cannot install a class not-associated with
a JAR if that class is currently installed and associated with a JAR.

CHAPTER 2 Preparing for and Maintaining Java in the Database

You can, however, install aclassin aretained JAR with the same name as
an installed class not associated with a JAR. In this case, the class not
associated with aJAR is deleted and the new class of the same nameis
associated with the new JAR.

If you want to reorganize your installed classes in new JARS, you may find it
easier to first disassociate the affected classes from their JARs. See “Retaining
Classes” on page 24 for information about disassociating classes from JARs.

Referencing Other Java-SQL Classes

Installed classes can reference other classes in the same JAR file and classes
previously installed in the same database, but they cannot references classes in
other databases.

If the classes in a JAR file do reference undefined classes, an error may result:

« Ifan undefined class is referenced directly in SQL, it causes a syntax error
for “undefined class.”

» If an undefined class is referenced within a Java method that has been
invoked, it throws a Java exception that may be caught in the invoked Java
method or cause the general SQL exception described in “Exceptions in
Java-SQL Methods” on page 35.

The definition of a class can contain references to unsupported classes and
methods as long as they are not actively referenced or invoked. Similarly, an
installed class can contain a reference to a user-defined class that is not
installed in the same database as long as the class is not instantiated or
referenced.

21

Viewing Information about Installed Classes and JARs

Viewing Information about Installed Classes and JARs

To view information about classes and JARs installed in the database, use the
sp_helpjava system procedure.The syntax is:

sp_helpjava [‘class’ [, name [,detail]] | ‘jar’ [, name]]

To view detailed information about the Address class, for example, login to
isgl and enter:

sp_helpjava “class”, Address, detail

Refer to “sp_helpjava” in thReference Manual for more information.

22

CHAPTER 2 Preparing for and Maintaining Java in the Database

Downloading Installed Classes and JARs

You can download copies of Java classes installed on one database for usein
other databases or applications.

Use the extractjava system utility to download a JAR file and its classes to a
client operating system file. For example, to download addr.jar to
~/home/usera/jars/addrcopy.jar, enter:

extractjava —j ‘addr.jar* -f
‘~/home/useral/jars/addrcopy.jar'

Refer to the Adaptive Server Utility Programs manual for more information
about this utility.

23

Removing Classes and JARs

Removing Classes and JARsS

Use the Transact-SQL remove java statement to uninstall one or more Java-
SQL classes from the database. remove java can specify one or more Java
class names, Java package names, or retained JAR names. For example, to
uninstall the package utilityClasses, fromisql enter:

remove java package “utilityClasses”

Note Adaptive Server does not allow you to remove classes that are used as
the datatypes for columns and parameters. Make sure that you do not remove
subclasses or classes that are used as variables or UDF return types.

When you specify remove java package the command deletes all classesin
the specified package and all of its sub-packages.

See the Reference Manual for more information about remove java.

Retaining Classes

24

You can delete a JAR file from the database but retain its classes as classes no
longer associated withaJAR. Useremove java withtheretain classes option
if, for example, you want to rearrange the contents of several retained JARSs.

For example, fromisql enter:
remove java jar 'utilityClasses' retain classes

Once the classes are disassociated from their JARS, you can associate them
with new JARs using installjava update.

CHAPTER 3 Using Java Classes in SQL

This chapter describes how to use Java classes in an Adaptive Server
environment. The first sections give you enough information to get
started; succeeding sections provide more advanced information.

These topics are discussed:

Name Page
General Considerations 26
Using Java Classes as Datatypes 28
Creating Tables with Java-SQL Columns 29
Selecting, Inserting, Updating, and Deleting Java Objects 31
Referencing Java Fieldsin SQL 33
Invoking Java Methods in SQL 34
Representing Java Instances 36
Datatype Mapping Between Javaand SQL Fields 40
Subtypesin Java-SQL Data 42
The Treatment of Nullsin Java-SQL Data 45
Java-SQL String Data 48
Type and Void Methods 49
Equality and Ordering Operations 52
Static Variables in Java-SQL Classes 55
Java Classes in Multiple Databases 56
Sample Java Classes 60

In this document, SQL columns and variables whose datatypes are Java-
SQL classes are described as Java-SQL columns and Java-SQL variables
or as Java-SQL dataitems.

The sample classes used in this chapter can be found in “Sample Java
Classes” on page 11 and$8YBASE/$SYBASE ASE/sample/Javasql
(UNIX) or %SYBASEY\Ase-12_O\samplé\JavaSgl (Windows NT).

25

General Considerations

General Considerations

Before you use Javain your Adaptive Server database, here are some general
considerations.

¢ Java-SQL classes contain:
¢ Fields that have declared Java datatypes
¢ Methods whose parameters and results have declared Java datatypes

« Java datatypes for which there are corresponding SQL datatypes are
defined in “Datatype Mapping Between Java and SQL” on page 166.

¢ Java-SQL classes caninclude classes, fields, and methods thataes
protected, friendly, orpublic.

Classes, fields and methods that@rblic can be referenced in SQL.
Classes, fields, and methods that@ieate, protected, orfriendly

cannot be referenced in SQL, but they can be referenced in Java, and are
subject to normal Java rules.

e Java-SQL classes, fields, and methods all have various syntactic
properties:

¢ Classes — the number of fields and their names
* Field — their datatypes

¢ Methods - the number of parameters and their datatypes, and the
datatype of the result

The SQL system determines these syntactic properties from the Java-SQL
classes themselves, using the Java Reflection API.

Java-SQL Names

Java-SQL class names (identifiers) are limited to 255 bytes. Java-SQL field
and method names can be any length, but they must be 255 bytes or less if you
use them in Transact-SQL. All Java-SQL names must conform to the rules for
Transact-SQL identifiers if you use them in Transact-SQL statements.

Class, field, and method names of 30 or more bytes must be surrounded by
guotation marks.

26

CHAPTER 3 Using Java Classes in SQL

Thefirst character of the name must be either an alphabetic character
(uppercase or lowercase) or an underscore (_) symbol. Subsequent characters
can include alphabetic characters, numbers, the dollar ($) symboal, or the
underscore (_) symbol.

Java-SQL names are always case sensitive, regardless of whether the SQL
system is specified as case sensitive or case insensitive.

See Java-SQL Identifiers on page 168 for more information about identifiers.

27

Using Java Classes as Datatypes

Using Java Classes as Datatypes

28

After you have installed a set of Java classes, you can reference them as
datatypesin SQL. To be used as a column datatype, a Java-SQL class must be
defined as public and must implement either java.io.Serializable or
java.io.Externalizable.

You can specify Java-SQL classes as:
e The datatypes of SQL columns

e The datatypes of Transact-SQL variables and parameters to Transact-SQL
stored procedures

e Default values for SQL columns

When you create a table, you can specify Java-SQL classes as the datatypes of
SQL columns:

create table enps (
nane var char (30),
honme_addr Address,
mai | i ng_addr Address2Line null)

Thename column is an ordinary SQL character string,hbme _addr and
mailing_addr columns can contain Java objects, address and
Address2Line are Java-SQL classes that have been installed in the database.

You can specify Java-SQL classes as the datatypes of Transact-SQL variables:

decl are @\ Address
decl are @2 Address2Li ne

You can also specify default values for Java-SQL columns, subject to the
normal constraint that the specified default must be a constant expression. This
expression is normally a constructor invocation using&weoperator with
constant arguments, such as the following:

create table enps (
nane var char (30),
home_addr Address default new Address
(" Not known’, '),
mai | i ng_addr Address2Li ne

CHAPTER 3 Using Java Classes in SQL

Creating Tables with Java-SQL Columns

When you create or ater tables with Java-SQL columns, you can specify any
installed Java class as a column datatype. You can aso specify how the
information in the column isto be stored. Your choice of storage options
influences the speed of referencing and updating the specified fields and
whether they can be indexed.

Column values for a row normally are stored “in row,” that is, consecutively on
the data pages allocated to a table. However, you can choose to store Java-SQL
columns in a separate “off row” location in the same way that text and image
data items are stored. The default for Java-SQL columns is off row.

If a Java-SQL column is stored in row:
« Java objects are processed faster than objects that are stored off row.

* Anobject stored in row cannot occupy more than 255 bytes. This includes
its entire serialization, not just the values in its fields. A Java object whose
runtime representation is more than 255 bytes generates an exception, and
the command aborts.

Note You can use theatalength system function to find the length of the
object. See thBeference Manual for information aboutiatalength.

If a Java-SQL column is stored off row, the column is subject to the restrictions
that apply to text and image columns:

« The column cannot be referenced in a check constraint.

e The column cannot be included in the column select list of a select query
with select distinct.

« The column cannot be specified in a comparison operator, in a predicate,
or in agroup by clause.

The syntax focreate table with thein row/off row option is:

create table...column_name datatype
[default {constant_expression | user | null}]
{[{identity | null | not null}]
[off row | in row]...

Similarly, the syntax foalter table is:

alter table...{add column_name datatype
[default {constant_expression | user | null}]
{identity | null} [off row | in row]...

29

Creating Tables with Java-SQL Columns

The following code fragment alters the emps table, adding a new column
vacation_addr with an Address datatype:

alter table emps add vacation_addr Address null

30

CHAPTER 3 Using Java Classes in SQL

Selecting, Inserting, Updating, and Deleting Java
Objects

After you specify Java-SQL columns, the values that you assign to those data
items must be Javainstances. Such instances are generated initially by callsto
Java constructors using the new operator. You can generate Java instances for
both columns and variables.

A constructor method has the same name as the class, and has no declared
datatype. If you do not include a constructor method in your class definition, a
default method is provided by the Java base object. You can supply more than
one constructor for each class, with different numbers and types of arguments.
When a constructor is invoked, the one with the proper number and type of
arguments is used.

In the following example, Javainstances are generated for both columns and
variables:

decl are @\ Address, @A Address, @\2 Address2Line,
@\A2 Address2Li ne

sel ect @\ = new Address()

sel ect @A = new Address(’ 123 Main Street’, '99123")

sel ect @2 = new Address2Line()

sel ect @A2 = new Address2Line(’ 987 Front Street’,
"Unit 2', '99543")

insert into enps val ues(’John Doe’, new Address(),
new Address2Line())

insert into enps values(’'Bob Smth', new Address(’432 Elm
Street’, ‘99654’), new Address2Line('PO Box 99',
‘attn: Bob Smith', '99678"))

Values assigned to Java-SQL columns and variables can then be assigned to
other Java-SQL columns and variables. For example:

declare @A Address, @AA Address, @A2 Address2Line,
@AA2 Address2Line

select @A = home_addr, @A2 = mailing_addr from emps
where name = 'John Doe'
insert into emps values (‘George Baker', @A, @A2)

select @AA2 = @A2
update emps
set home_addr = new Address('456 Shoreline Drive', '99321"),
mailing_addr = @AA2

31

Selecting, Inserting, Updating, and Deleting Java Objects

where nane = 'Bob Smith’

You can also copy values of Java-SQL columns from one table to another. For
example:

create table trainees (
nanme char (30),
hone_addr Address,
mai | i ng_addr Address2Li ne nul |
)
insert into trainees
select * from enps
where nane in ('Don Green’, 'Bob Smth’,
" Geor ge Baker')

32

CHAPTER 3 Using Java Classes in SQL

Referencing Java Fields in SQL

You can reference and update thefiel ds of Java-SQL columns and of Java-SQL
variables with normal SQL qualification. To avoid ambiguities with the SQL
use of dotsto qualify names, use adouble-angle (>>) to qualify Javafield and
method names when referencing themin SQL.

decl are @ane varchar (100), @treet varchar(100),
@treetline2 varchar(100), @ip char(10), @A\ Address

sel ect @\ = new Address()
sel ect @\>>street = '789 (Oak Lane’
sel ect @treet = @>>street

sel ect @treet = hone_addr>>street, @ip = hone_addr>>zip from enps
where nane = 'Bob Snith’

sel ect @anme = name from enps
where home_addr >>street= '456 Shoreline Drive’

updat e enps
set hone_addr>>street = '457 Shoreline Drive',
honme_addr >>zi p = ' 99323’
where home_addr >>street = ' 456 Shoreline Drive’

33

Invoking Java Methods in SQL

Invoking Java Methods in SQL

You can invoke Javamethodsin SQL by referencing them, with name
qualification, on instances for instance methods, and on either instances or
classes for class methods.

Instance methods are generally closely tied to the data encapsulated in an
instance of their class. A class method is the same as a static method. Class
methods often apply to objects and values from a wide range of classes.

Onceyou haveinstalled aclassmethod, it isready for use. A classthat contains
aclass method for use as afunction must be public, but it does not need to be
serializable.

One of the primary benefits of using Javawith Adaptive Server isthat you can
use class methods that return a value to the caller as user-defined functions
(UDFs).

You can use a Java class method as a UDF in a stored procedure, atrigger, a
where clause, or anywhere that you can use a built-in SQL function.

Sample Methods

Thesample Address and Address2Line classes have instance methods named
toString(), and the sample Misc class has class methods named
stripLeadingBlanks(), getNumber(), and getStreet(). You caninvoke value
methods as functions in a value expression.

decl are @ane varchar (100)
decl are @treet varchar(100)
decl are @treetnumint

decl are @2 Address2Li ne

sel ect @anme = M sc. stripLeadi ngBl anks(nane),

34

@treet = M sc.stripLeadi ngBl anks(home_addr >>street),
@treetnum = M sc. get Nunber (hone_addr >>street),
@\2 = mailing_addr

from enps

where hone_addr>>toString() like '%shoreline%

For information about void methods (methods with no returned value) see
“Type and Void Methods” on page 49.

CHAPTER 3 Using Java Classes in SQL

Exceptions in Java-SQL Methods

When the invocation of a Java-SQL method completes with unhandled
exceptions, a SQL exception israised, and this error message displays:

Java nethod term nated with exception

The message text for the exception consists of the name of the Java class that
raised the exception, followed by the character string (if any) supplied when
the Java exception was thrown.

35

Representing Java Instances

Representing Java Instances

36

When you select a Java-SQL dataiteminisql, Adaptive Server returns the
object (thereference to the Javainstance), not the value. Adaptive Server must
use the object to interact with the Java VM.

If, for example, you want to use an actual string value, you must invoke a
method that translates the object into a char or varchar value. ThetoString()
method in the Address classis an example of such a method. UsetoString()
or asimilar method for numbers when you want to:

» Display or print the value
» Use a datatype that does not map to a SQL datatype
» Compare values

When you use theString() method, Adaptive Server imposes a limit of 255
characters. The display software on your computer may truncate the data item
further so that it fits on the screen without wrapping.

If you include aoString() or similar method in each class, you can return the
value of the object'®String() method in either of two ways:

¢ You can select a particular field in the Java-SQL column, which
automatically invokesoString():

sel ect honme_addr>>street from enps

¢ You can select the column and tb&tring() method, which lists in one
string all of the field values in the column:

sel ect hone_addr>>toString() from enps

CHAPTER 3 Using Java Classes in SQL

Assignment Properties of Java-SQL Data Items

Thevaluesassigned to Java-SQL dataitemsare derived ultimately from values
constructed by Java-SQL methods in the Java VM. However, the logical
representation of Java-SQL variables, parameters, and resultsis different from
the logical representation of Java-SQL columns.

Java-SQlcolumns, which are persistent, are Java serialized streams stored
in the containing row of the table. They are stored values containing
representations of Java instances.

Java-SQLlvariables, parameters, andfunction results are transient. They
do not actually contain Java-SQL instances, but instead contain references
to Java instances contained in the Java VM.

These differences in representation give rise to differences in assignment
properties as these examples illustrate.

The Address constructor method with tieev operator is evaluated in the
Java VM. It constructs afddress instance and returns a reference to it.
That reference is assigned as the value of Java-SQL va@sble

decl are @\ Address, @\A Address, @\2 Address2Line,
@\A2 Address2Li ne
sel ect @\ = new Address(’432 Post Lane’, ’'99444')

Variable @A contains a reference to a Java instance in the Java VM. That
reference is copied into variab@®AA. Variables@A and @AA now
reference the same instance.

sel ect @G\A=@A

This assignment modifies thip field of theAddress referenced by@A.
This is the samaddress instance that is referenced @AA. Therefore,
the values of@A.zip and@AA.zip are now both '99222',

sel ect @\>>zi p=' 99222’

TheAddress constructor method with theew operator constructs an
Address instance and returns a reference to it. However, since the target
is a Java-SQL column, the SQL system serializeathieess instance
denoted by that reference, and copies the serialized value into the new row
of theemps table.

insert into enps
val ues (' Don Green’, new Address(’234 Stone
Road’, '99777'), new Address2Line())

37

Assignment Properties of Java-SQL Data Items

38

insert

insert

into enps

into enps

The Address2Line constructor method operates the same way as the
Address method, except that it returns a default instance rather than an
instance with specified parameter values. The action takenis, however, the
same as for the Address instance. The SQL system serializes the default
Address2Line instance, and stores the serialized value into the new row
of the empstable.

Theinsert statement specifies no value for the mailing_addr column, so
that column will be set toull, in the same manner as any other column
whose value is not specified in asert. This null value is generated
entirely in SQL, and initialization of theailing_addr column does not
involve the Java VM at all.

(nane, honme_addr) values (' Frank Lee’', @)

Theinsert statement specifies that the value offtbme_addr column is

to be taken from the Java-SQL varia@é. That variable contains a
reference to aAddress instance in the Java VM. Since the target is a
Java-SQL column, the SQL system serializesAtihdress instance
denoted by@A, and copies the serialized value into the new row of the
emps table.

This statement inserts a nemps row for '‘Bob Brown.' The value of the
home_addr column is taken from the SQL varial@®A. It is also a
serialization of the Java instance reference@by

(nane, hone_addr) values (' Bob Brown', @)

This update statement sets the zip field ofhibree_addr column of the
'Frank Lee' row to '99777.' This has no effect onzthdield in the '‘Bob
Brown' row, which is still '99444.'

updat e enps
set home_addr>>zip = '99777’
where nane = ' Frank Lee’

The Java-SQL columhome_addr contains a serialized representation of

the value of address instance. The SQL system invokes the Java VM

to de-serialize that representation as a Java instance in the Java VM, and
return a reference to the new deserialized copy. That reference is assigned
to @AA. The deserializedddress instance that is referenced @AA is
entirely independent of both the column value and the instance referenced
by @A.

sel ect @A = honme_addr from enps where name = 'Frank Lee’

CHAPTER 3 Using Java Classes in SQL

This assignment modifies the zip field of thedress instance referenced
by @A. This instance is a copy of theme_addr column of the 'Frank Lee'
row, but is independent of that column value. The assignment therefore

does not modify the zip field of thH®me _addr column of the 'Frank Lee'
row.

select @>>zip = '95678

39

Datatype Mapping Between Java and SQL Fields

Datatype Mapping Between Java and SQL Fields

When you transfer datain either direction between the JavaVM and Adaptive

Server, you must take into account that the datatypes of the dataitems are

different in each system. Adaptive Server automatically maps SQL items to

Java items and vice versa according to the correspondence tables in “Datatype
Mapping Between Java and SQL” on page 166.

Thus, SQL type char translates to Java type String, the SQL type binary
translates to the Java type byte[], and so on.

¢ For the datatype correspondences from SQL to Java, char, varchar, and
varbinary types of any length correspond to Java String or byte[]
datatypes, as appropriate.

» For the datatype correspondences from Java to SQL:

e The Java String and byte[] datatypes correspond to SQL varchar(255)
and varbinary(255), where the maximum length value of 255 bytes is
defined by Adaptive Server.

e The Java BigDecimal datatype corresponds to SQL
numeric(precision,scale), where precision and scale are defined by
the user.

Since the maximum length values for varchar and varbinary are 255 bytes, the
Address andAddress2Line classesstreet, zip, andline2 fields, whose Java
datatypes are all String, are treated in SQL as datatype varchar(255).

An expression whose datatype is a Java object type is converted to the

corresponding SQL datatype only when the expression is used in a SQL
context. For example, if the fieldbme_addr>> street for employee ‘Smith’ is

260 characters, and begins ‘6789 Main Street ...:

select Misc.getStreet(home_addr>>street) from emps where name='Smith’

40

The expression in the select list passes the 260-character value of
home_addr>>street to the getStreet() method (without truncating it to 255
characters). The getStreet() method then returns the 255-character string
beginning ‘Main Street....". That 255-character string is now an element of the
SQL select list, and is, therefore, converted to the SQL datatype and (if need
be) truncated to 255 characters.

CHAPTER 3 Using Java Classes in SQL

Character Sets for Data and Identifiers

The character set for both Java program text and for Java String dataiis
Unicode.

In Java program text installed in SQL, the Java identifiers used in the fully
qualified names of visible classes or in the names of visible members can use
only Latin characters and Arabic numerals.

Fields of Java-SQL classes can aso contain Unicode data.

41

Subtypes in Java-SQL Data

Subtypes in Java-SQL Data

Class subtypes allow you to use the substitution and method overloading
characteristics of Java. A conversion from a class to one of its superclassesis
awidening conversion; a conversion from aclass to one of its subclassesisa
narrowing conversion.

e Widening conversions are performed implicitly with normal assignments
and comparisons. They are always successful, since every subclass
instance is also an instance of the superclass.

* Narrowing conversions must be specified with exptioitvert
expressions. A narrowing conversion is successful only if the superclass
instance is an instance of the subclass, or a subclass of the subclass.
Otherwise, an exception occurs.

Widening Conversions

You do not need to use thenvert function to specify a widening conversion.
For example, since thieddress2Line class is a subclass of thedress class,
you can assigAddress2Line values tAddress data items. In thempstable,
thehome_addr column is arAddress datatype and theailing_addr column

is anAddress2Line datatype:

updat e enps
set home_addr = mailing_addr
where hone_addr is null

For the rows fulfilling thevhere clause, thdhome _addr column contains an
Address2Line, even though the declared typehofme addr is Address.

Such an assignment implicitly treats an instance of a class as an instance of a
superclass of that class. The runtime instances of the subclass retain their
subclass datatypes and associated data.

Narrowing Conversions

updat e enps

42

set nmiling_addr

You must use theonvert function to convert an instance of a class to an
instance of a subclass of the class. For example:

= convert (Address2Li ne, hone_addr)

where mailing_addr is null

CHAPTER 3 Using Java Classes in SQL

The narrowing conversionsin the update statement cause an exception if they
are applied to any home_addr column that contains an Address instance that
isnot an Address2Line. You can avoid such exceptions by including a
condition in the where clause:

updat e enps
set mailing_addr = convert (Address2Li ne, hone_addr)
where mailing_addr is null
and hone_addr>>get Cl ass()>>toString() = 'Address2Li ne’

The expression “home_addr>>getClass()>>toString()” invgkeSlass()
andtoString() methods of the Jav@bject class. Th®bject class is implicitly

a superclass of all classes, so the methods defined for it are available for all
classes.

You can also use@ase expression:

updat e enps
set mmiling_addr =
case
when hone_addr >>get Cl ass() >>toString()
=’ Addr ess2Li ne’
then convert (Address2Li ne, hone_addr)
el se null
end
where mailing_addr is null

Runtime vs. Compile-Time Datatypes

Neither widening nor narrowing conversions modify the actual instance value
or its runtime datatype; they simply specify the class to be used for the compile-
time type. Thus, when you stok@dress2Line values from thenailing_addr
column into thdhome_address column, those values still have the runtime type

of Address2Line.

For example, thaddress class and thaddress2Line subclass both have the
methodtoString(), which returns a String form of the complete address data.

sel ect nane, honme_addr>>toString() fromenps
where home_addr>>toString() not like ' %.ine2=[]’

43

Subtypes in Java-SQL Data

44

For each row of emps, the declared type of thehome_addr columnisAddress,
but the runtime type of the home_addr value is either Address or
Address2Line, depending on the effect of the previous update statement. For
rows in which the runtime value of the home_addr columnisan Address, the
toString() method of the Address classisinvoked, and for rowsin which the
runtime value of the home_addr column isAddress2Line, thetoString()
method of the Address2Line subclassisinvoked.

See “Null Values When Using the SQL convert Function” on page 47 for a
description of null values for widening and narrowing conversions.

CHAPTER 3 Using Java Classes in SQL

The Treatment of Nulls in Java-SQL Data

This section discusses the use of nullsin Java-SQL dataitems.

References to Fields and Methods of Null Instances

If the value of the instance specified in afield reference is null, then the field
referenceisnull. Similarly, if the value of the instance specified in an instance
method invocation is null, then the result of the invocation is null.

In Java, if you attempt to reference afield of anull instance, an exception is
raised. Javain Adaptive Server does not follow this convention, allowing you
to write select and other statements, even if some rows in emps contain null
values for home_addr. For example:

sel ect name, home_addr>>zip from enps
where hone_addr>>zip in (’95123', '95125", ’'95128")

For rows whose home_addr column is null, the field reference
home_addr>>zpisalso null. Thewhere clauseis evaluated for each row of
emps, including those rows in which the home_addr columnisnull.

Note, however, that thisrule for field references with null instances only
appliestofield referencesin source (right-side) contexts, not to field references
that are targets (left-side) of assignments or set clauses. For example:

updat e enps
set honme_addr>>zip = ' 99123
where nane = ' Charles Geen’

Thiswhere clause is obviously true for the ‘Charles Green’ row, soplate
statement tries to perform tket clause. This raises an exception, since you
cannot assign a value to a field of a null instance as the null instance has no
field to which a value can be assigned. Thus, field references to fields of null
instances are valid and return the null value in right-side contexts, and cause
exceptions in left-side contexts.

The same considerations apply to invocations of methods of null instances, and
the same rule is applied. For example, if we modify the previous example and
invoke thetoString() method of thénome_addr column:

sel ect nanme, hone_addr>>toString() from enps
where hone_addr>>toString() = ' Street=234 Stone
Road ZI P= 99777’

45

The Treatment of Nulls in Java-SQL Data

If the value of the instance specified in an instance method invocation is null,
then the result of the invocation is null. Hence, the select statement isvalid
here, whereas it raises an exception in Java.

Null Values as Arguments to Java-SQL Methods

Null parameter values are independent of the actions of the method for which
they are an argument, but instead depend on the ability of the return datatype
to deliver anull value.

You cannot passthe null value asaparameter to aJJavascalar type method; Java
scalar types are always non-nullable. However, Java object types can accept
null values.

For the following Java-SQL class:

public class General inplenments java.io.Serializable {
public static int identityl(int I) {return I;}
public static java.lang.Integer identity2
(java.lang.Integer 1) {return I;}
public static Address identity3 (Address A) {return A}

}
Consider these cdlls:

declare @ int
decl are @\ Address;

select @ = Ceneral.identityl(@)
select @ = Ceneral.identity2(new java.lang.Integer(@))
select @\ = Ceneral.identity3(@)

Thevalues of both variable @I and variable @A are null, since values have not
been assigned to them.

« The call of thedentity1() method raises an exception. The datatype of the
paramete@! of identity1() is the Java int type, which is scalar and has
no null state. An attempt to pass a null valued argumedéetoity1()
raises an exception.

» The call of thedentity2() method succeeds. The datatype of the
parameter ofdentity2() is the Java clagava.lang.Integer, and thenew
expression creates an instancgoé.lang.Integer that is set to the value
of variable@lI.

* The call of thadentity3() method succeeds.

46

CHAPTER 3 Using Java Classes in SQL

A successful call of identity1() never returnsanull result, sincethereturntype
hasno null state. Successful callsof identity2() andidentity3() can return null
results.

Null Values When Using the SQL convert Function

You use the convert function to convert a Java object of one classto a Java
object of asuperclass or subclass of that class.

As shown in “Subtypes in Java-SQL Data” on page 4%dhe_addr column
of theemps table can contain values of both thedress class and the
Address2Line class. In this example:

sel ect nane, hone_addr>>street, convert (Address2Li ne, home_addr)>>line2,
honme_addr >>zi p from enps

the expression “convert(Address2Line, home_addr)” specifies a datatype
(Address2Line) and an expressiohdme_addr). At compile-time, the
expressioni{ome_addr) must be a subtype or supertype of the class
(Address2Line). At runtime, the action of thisonvert invocation depends on
whether the value of the expression is a class, subclass, or superclass:

e If the runtime value of the expressidmofne_addr) is the specified class
(Address2Line) or its subclass, the value of the expression is returned,
with the specified datatyp@{dress2Line).

e If the runtime value of the expressidine_addr) is a superclass of the
specified classAddress), then a null is returned.

Adaptive Server evaluates thelect statement for each row of the result. For
each row:

e If the value of thdnome addr column is arAddress2Line, thenconvert
returns that value, and the field reference extractiib2 field.

Hence, the results of tlelect shows thedine2 value for those rows whose
home_addr column is arAddress2Line and a null for those rows whose
home_addr column is amddress. As described in “The Treatment of Nulls in
Java-SQL Data” on page 45, thelect also shows a nuline2 value for those
rows in which théhome_addr column is null.

47

Java-SQL String Data

Java-SQL String Data

In Java-SQL columns, fields of type String are stored as Unicode.

When a Java-SQL String field is assigned to a SQL dataitem whose type is
char, varchar, nchar, nvarchar, or text, the Unicode data is converted to the

character set of the SQL system. Conversion errors are specified by the set

char_convert options.

When a SQL data item whose type is char, varchar, nchar, or text is assigned
to aJava-SQL String field that is stored as Unicode, the character dataiis
converted to Unicode. Undefined codepoints in such data cause conversion
errors.

Zero-Length Strings

48

In Transact-SQL, a zero-length character string istreated as a null value, and
the empty string () istreated as a single space.

To be consistent with Transact-SQL, when a Java-SQL String value whose
length is zero is assigned to an SQL data item whose type is char, varchar,
nchar, nvarchar, or text, the Java-SQL String value is replaced with asingle
space.

For example:

1> decl are @ varchar(20)

2> select @ = new java.lang.String()
3> select @, char_length(@)

4> go

(1 row affected)

1

If the zero-length Java-SQL String value was assigned to the SQL dataitem as
a zero-length string, that zero-length value would be treated in SQL as a SQL
null, and when assigned to a Java-SQL String, the Java-SQL String would be
aJavanull.

CHAPTER 3 Using Java Classes in SQL

Type and Void Methods

Java methods (both instance and static) are either type methods or void
methods. In general, type methods return a value of the result type, and void
methods perform some action(s) and return nothing.

For example, in the Address class:
e ThetoString() method is aype method whose type is String.
e TheremoveLeadingBlanks() method is aoid method.

» TheAddress constructor method istgpe method whose type is the
Address class.

As in Java, you invoke type methods as functions and useth&eyword
when invoking a constructor method:

insert into enps
val ues (' Don Green’, new Address(’234 Stone Road', '99777'),
new Address2Line())

sel ect nane, honme_addr>>toString() from enps
where home_addr>>toString() like ‘%Baker%’

TheremoveleadingBlanks() method of the Address classisavoid instance
method that modifies the street and Zip fields of agiven instance. You can
invoke removeLeadingBlanks() for the home_addr column of each row of
the emps table. For example:

update emps
set home_addr =
home_addr>>removeLeadingBlanks()

removeleadingBlanks() removes the leading blanks from the street and zip
fieldsof thehome_addr column. The Transact-SQL update statement does not
provide aframework or syntax for such an action. It simply replaces column
values.

Java Void Instance Methods

To use the “update-in-place” actions of Java void instance methods in the SQL
system, Java in Adaptive Server treats a call of a Java void instance method as
follows:

For a void instance methad() of an instanc€l of a classC, written
“CLM(...)"™:

49

Type and Void Methods

In SQL, the call is treated as a type method call. The result type is
implicitly classC, and the result value is a referenc€toThat reference
identifies the instanc€l after the actions of the void instance method call.

In Java, this call is a void method call, which performs its actions and
returns no value.

For example, you can invoke themovelLeadingBlanks() method for the
home_addr column of selected rows of tleenps table as follows:

updat e enps

set home_addr = home_addr >>r enovelLeadi ngBl anks()
where home_addr>>removelLeadingBlanks()>>street like “123%"

1

In the where clause, “home_addr>>removeleadingBlanks()” calls the
removeLeadingBlanks() method for thdnome_addr column of a row of
theemps table.removeLeadingBlanks() strips the leading blanks from
thestreet andzp fields of a copy of the column. The SQL system then
returns a reference to the modified copy ofttbee_addr column. The
subsequent field reference:

home_addr >>r enpvelLeadi ngBl anks() >>street

returns thestreet field that has the leading blanks removed. The references
to home_addr in thewhere clause are operating on a copy of the column.
This evaluation of thevhere clause doerot modify thehome _addr

column.

Theupdate statement performs thet clause for each row @mpsin
which thewhere clause is true.

On the right-side of theet clause, the invocation of
“home_addr>>removelLeadingBlanks()” is performed as it was for the
where clauseremoveleadingBlank() strips the leading blanks from

street andzp fields of that copy. The SQL system then returns a reference
to the modified copy of thhome_addr column.

TheAddress instance denoted by the result of the right-side oé¢he

clause is serialized and copied into the column specified on the left-side of
theset clause: the result of the expression on the right-side afethe

clause is a copy of tH®me_addr column in which the leading blanks

have been removed from thieeet andzip fields. The modified copy is

then assigned back to theme_addr column as the new value of that
column.

The expressions of the right and left side of the right-side clause are
independent, as is normal for tiyedate statement.

50

CHAPTER 3 Using Java Classes in SQL

The following update statement shows an invocation of avoid instance
method of the mailing_addr column on the on the right side of the set clause
being assigned to the home_address column on the left side.

updat e enps
set hone_addr = nmmiling_addr>>renovelLeadi ngBl anks()
where ...

Inthis set clause, the void method removelL eadingBlanks() of the
mailing_addr column yields areference to a modified copy of the
Address2Line instancein the mailing_addr column. The instance denoted by
that reference is then serialized and assigned to the home_addr column. This
action updates the home_addr column; it has no effect on the mailing_addr
column.

Java Void Static Methods

With Adaptive Server Version 12, you cannot invoke a void static method
using asimple SQL execute command. Rather, you must place the invocation
of the void static method in aselect statement.

For example, suppose that a Java class C has avoid static method M(...), and
assume that M() performs an action you want to invoke in SQL. For example,
M() can use JDBC callsto perform a series of SQL statements that have no
return values, such as create or drop, that would be appropriate for avoid
method.

You must invoke the void static method in a select command, such as:
select CM...)

To alow void static methods to be invoked using aselect, void static methods
aretreated in SQL as returning avalue of datatype int with avalue of null.

51

Equality and Ordering Operations

Equality and Ordering Operations

You can use equality and ordering operators when you use Javain the database;
however, you cannot:

52

Reference Java-SQL data items in ordering operations.

Reference Java-SQL data items in equality operations if, at runtime, their
representation is greater than 255 bytes.

Use theorder by clause, which requires that you determine the sort order.

Make direct comparisons using the “>", “<”, “<=", or “>=" operator.

These equality operations are allowed in JCS:

Use of thalistinct keyword, which is defined in terms of equality of rows,
including Java-SQL columns.

Direct comparisons using the “=" and “!=" operators.

Use of theunion operator (notinion all), which eliminates duplicates,
and requires the same kind of comparisons adithiact clause.

Use of thegroup by clause, which partitions the rows into sets with equal
values of the grouping column.

CHAPTER 3 Using Java Classes in SQL

Call-by-Reference for Java Methods

Adaptive Server does not have a defined order for evaluating operands of
comparisons and other operations. Instead, Adaptive Server evaluates each
guery and chooses an evaluation order based on the most rapid rate of
execution.

This section describeshow different eval uation orders affect the outcome when
you pass columns or variables and parameters as arguments. The examplesin
this section use the following Java-SQL class:

public class Utility inplements java.io.Serializable {
public static int F (Address A) {
if (A zip.length() > 5) return 0;
else {Azip=Azip + "-1234"; return 1;}

}
public static int G (Address A) {

if (Azip.length() > 5) return O;
else {Azip = Azip + "-1234"; return 1;}

Columns

In general, avoid using methods or value-returning contexts that modify their
arguments. Where there are multiple invocations of the same or different
methods, the order of evaluation can affect the outcome.

For example, in this example:

select * fromenp E
where Uility. F(E. home_addr) > Wility.F(E. home_addr)

thewhere clause passes the same home_addr column in two different method
invocations. Consider the evaluation of the where clause for arow whose
home_addr column has a 5-character zip, such as “95123.”

Adaptive Server can initially evaluate either the left or right side of the
comparison. After the first evaluation completes, the second is processed.
Because it executes faster this way, Adaptive Server may let the second

invocation see the modifications of the argument made by the first invocation.

53

Call-by-Reference for Java Methods

In the example, the first invocation chosen by Adaptive Server returns 1, and
the second returns 0. If the |eft operand is evaluated first, the comparison is
1>0, and the where clauseistrue; if the right operand is evaluated first, the
comparison is 0>1, and the where clause is false.

Variables and Parameters

Similarly, the order of evaluation can affect the outcome when passing
variables and parameters as arguments.

Consider the following statements:

decl are @\ Address
decl are @rder varchar(20)

sel ect @ = new Address(’95444’, ’'123 Port Avenue’)
sel ect case when Wility. F(@)>Uility. g @)

then ‘Left’ else ‘Right’ end
select @Order = case when utility. F(@A) > utility. G(@A)

then 'Left' else 'Right' end

The new Address has afive-character zip code field. When the case
expression is evaluated, depending on whether the left or right operand of the
comparison is evaluated first, the comparison is either 1>0 or 0>1, and the
@Order variable is set to ‘Left’ or ‘Right’ accordingly.

As for column arguments, the expression value depends on the evaluation
order. Depending on whether the left or right operand of the comparison is
evaluated first, the resulting value of thp field of theAddress instance
referenced by@A is either “95444-4321" or “95444-1234.”

54

CHAPTER 3 Using Java Classes in SQL

Static Variables in Java-SQL Classes

A Javavariable that is declared static is associated with the Java class, rather
than with each instance of theclass. Thevariableisallocated oncefor theentire
class.

For example, you might include a static variable in the Address class that
specifies the recommended limit on the length of the Sreet field:

public class Address implements java.io.Serializable {
public static int recomrendedLimt;
public String street;
public String zip;
11

You can specify that a static variable isfinal, which indicates that it is not
updatable:

public static final int recommendedLimt;
Otherwise, you can update the variable.

You reference a static variable the same way as a dynamic variable—by
qualifying the variable name with an instance of the class:

sel ect Address.recomendedLimt = 20
i f Address.recomendedLinmt < 50
sel ect Address.recomendedLinit = Address.recommended_limt + 5

Values assigned to non-final static variables are accessible only within the
current session.

55

Java Classes in Multiple Databases

Java Classes in Multiple Databases

Scope

You can store Java classes of the same namein different databases in the same
Adaptive Server system. This section describes how you can use these classes.

When you install a Javaclass or set of classes, they areinstalled in the current
database. When you dump or load a database, the Java-SQL classes that are
currently installed in that database are always included—even if classes of the
same name exist in other databases in the Adaptive Server system.

You can install Java classes with the same name in different databases. These
synonymous classes can be:

* |dentical classes that have been installed in different databases.

« Different classes that are intended to be mutually compatible. Thus, a
serialized value generated by either class is acceptable to the other.

» Different classes that are intended to be “upward” compatible. That is, a
serialized value generated by one of the classes should be acceptable to the
other, but not vice versa.

» Different classes that are intended to be mutually incompatible; for
example, a class namé&teet designed for supplies of paper, and other
classes namesheet designed for supplies of linen.

Cross-Database References

56

You can reference classes in one database from another database.
For example, assume the following configuration:
 TheAddress class is installed idb1 anddb?2.

» Theempstable has been created in bdtil with owner Smith, and idb2,
with owner Jones.

In these examples, the current databasgblisYou can invoke a join or a
method across databases. For example:

e Ajoin across databases might look like this:

decl are @ount int
sel ect @ount (*)

CHAPTER 3 Using Java Classes in SQL

from db2. Jones. enps, dbl. Smith. enps
where db2. Jones. enps. hone_addr>>zip =
dbl. Smi t h. enps. honme_addr >>zi p

* A method invocation across databases might look like this:

sel ect db2.Jones. enps. honme_addr>>t oString()
from db2. Jones. enps
where db2. Jones. enps. nane = ' John Stone’

In these examples, instance values are not transferred. Fields and methods of
an instance contained b2 are merely referenced by a routinedbi. Thus,
for across-database joins and method invocations:

+ dbl need not contain afddress class.

« If dbl does contain aaddress class, it can have completely different
properties than thaddress class indb2.

Inter-Class Transfers

You can assign an instance of a class in one database to an instance of a class
of the same name in another database. Instances created by the class in the
source database are transferred into columns or variables whose declared type
is the class in the current (target) database.

You can insert or update from a table in one database to a table in another
database. For example:

insert into dbl. Smith.enps select * from
db2. Jones. enps

updat e dbl. Smith. enps
set hone_addr = (sel ect db2.Jones. enps. hone_addr
from db2. Jones. enps
where db2. Jones. enps. nane =
dbl. Smi t h. enps. nane)

You can insert or update from a variable in one database to a another database.
(The following fragment is in a stored proceduredb®.) For example:

decl are @uone_addr Address

select @home_addr = new Address(‘94608’, ‘222 Baker
Street’)

insert into db1.Janes.emps(name, home_addr)
values (‘Jone Stone’, @home_addr)

In these exampl es, instance values are transferred between databases. You can:

57

Java Classes in Multiple Databases

» Transfer instances between two local databases.
» Transfer instances between a local database and a remote database.
e Transfer instances between a SQL client and an Adaptive Server.

* Replace classes usiigstall andupdate statements aemove and
update statements.

In an inter-class transfer, the Java serialization is transferred from the source to
the target.

Passing Inter-Class Arguments

You can pass arguments between classes of the same name in different
databases.When passing inter-class arguments:

¢ A Java-SQL column is associated with the version of the specified Java
class in the database that contains the column.

¢ A Java-SQL variable (in Transact-SQL) is associated with the version of
the specified Java class in the current database.

A Java-SQL intermediate result of cla&$s associated with the version
of classC in the same database as the Java method that returned the result.

* When a Java instance vallids assigned to a target variable or column,
or passed to a Java methdldis converted from its associated class to the
class associated with the receiving target or method.

Temporary and Work Databases

58

All rules for Java classes and databases also apply to temporary databases and
the model database:

e Java-SQL columns of temporary tables contain byte string serializations
of the Java instances.

e AlJava-SQL column is associated with the version of the specified class in
the temporary database.

You can install Java classes in a temporary database, but they will persist only
as long as the temporary database persists.

CHAPTER 3 Using Java Classes in SQL

The simplest way to provide Java classes for reference in temporary databases
isto install Java classes in the model database. They are then present in any
temporary database derived from the model.

59

Sample Java Classes

Sample Java Classes

This section shows the simple Java classes that this chapter uses to illustrate
Javain Adaptive Server. You can also find these classes and their Java source
code in $SYBASE/$SYBASE_ASE/sample/Javasgl. (UNIX) or
%SYBASEY\Ase-12_0\sample\JavaSgl (Windows NT).

Thisisthe Address class:

I

/1 Copyright (c) 1999

/1 Sybase, Inc

/'l Emeryville, CA 94608
/1 Al Rights Reserved

I

/**

* Asinple class for address data, to illustrate using a Java cl ass
* as a SQL datatype.

*/

public class Address inplenments java.io.Serializable ({

/**
* The street data for the address.
* @erial A sinple String val ue.
*/

public String street;

/**
* The zi pcode data for the address.
* @erial A sinple String val ue.
*/
String zip;

/** A default constructor.
*/
public Address () {
street = "Unknown";
zip = "None";
}
/**
* A constructor with paraneters
* @aram S a string with the street information
* @aram Z a string with the zipcode information
*/
public Address (String S, String 2) {
street = §;

60

CHAPTER 3 Using Java Classes in SQL

zZip = Z
}
/**
* A nethod to return a display of the address data.
* @eturns a string with a display version of the address data.
*/
public String toString() {
return "Street=" + street + " ZIP=" + zip;

}
/**
* A void method to renove | eadi ng bl anks.
* This method uses the static nethod
* <code>M sc. stri pLeadi ngBl anks</ code>.

*/

public void renovelLeadi ngBl anks() {

street = M sc. stripLeadi ngBl anks(street);

zip = Msc.stripLeadi ngBl anks(street);

}
}

Thisisthe Address2Line class, which is a subclass of the Address class:

I

/1l Copyright (c) 1999
/1 Sybase, Inc

/1 Emeryville, CA 94608
/'l Al R ghts Reserved
11

/**

* A subcl ass of the Address class that adds a seond |line of address data,

* <p>This is a sinple subclass to illustrate using a Java subcl ass
* as a SQL datatype.
*/

public class Address2Li ne extends Address inplenents java.io.Serializable {

/**
* The second line of street data for the address.
* @erial a sinple String val ue
*/
String linez;
/**
* A default constructor
*/
public Address2Line () {
street = "Unknown";
line2 =" ";
zip = "None";

61

Sample Java Classes

}

/**

* A constructor with paraneters.

* @aram S a string with the street information

* @aramL2 a string with the second |line of address data

* @aramZ a string with the zi pcode information

*/

public Address2Line (String S, String L2, String 2) {
street = §
line2 = L2;
zip = Z

}

/**

* Amethod to return a display of the address data
* @eturns a string with a display version of the address data
*/

public String toString() {
return "Street= " + street + " Line2=" + line2 + " ZIP=" + zip;

}

/**
* A void nethod to renmove | eadi ng bl anks.

* This nethod uses the static nethod
* <code>M sc. stri pLeadi ngBl anks</ code>.

*/
public void renovelLeadi ngBl anks() {
line2 = Msc.stripLeadingBl anks(line2);
super . renoveleadi ngBl anks();
}
}
The Misc class contains sets of miscellaneous routines:
I

/1 Copyright (c) 1999

/1 Sybase, Inc

/1 Enmeryville, CA 94608

/1 Al Rights Reserved

/1

/**

* A non-instantiable class with mscell aneous static nethods
* that illustrate the use of Java nethods in SQ.

*/

62

CHAPTER 3 Using Java Classes in SQL

public class M sc{

/**

* The Msc class contains only static nmethods and cannot be instantiated.
*/

private Msc() { }

/**

* Renoves | eading blanks froma String

*/
public static String striplLeadi ngBl anks(String s) {
if (s ==null) return null;
for (int scan=0; scan<s.length(); scan++)
if (!java.lang. Character.isWiitespace(s.charAt(scan)))
br eak;
} else if (scan == s.length()){
return "";
} else return s.substring(scan);
}
}
}
return "";
}
/**
* Extracts the street number froman address |ine.
* e.g., Msc.getNumber (" 123 Main Street") == 123
* M sc. get Nurber (" Main Street") ==
* M sc. get Nunber ("") == 0
* M sc. get Nurber (" 123 ") == 123
* M sc. get Nunber (" Main 123 ") == 0
* @arams a string assuned to have address data
* @eturn a string with the extracted street nunber
*

~

public static int getNunber (String s) {
String stripped = stripLeadi ngBl anks(s);
if (s==null) return -1;
for(int right=0; right < stripped.length(); right++){
if (!java.lang.Character.isD git(stripped.charAt(right))) {
br eak;
} else if (right==0){
return O;
} else {
return java.l ang. | nteger. parsel nt
(stripped.substring(0, right), 10);

63

Sample Java Classes

}
}

return -1,

/**

* Extract the "street" froman address |ine.

* e.g., Msc.getStreet(" 123 Main Street") == "Main Street"
* Msc.getStreet (" Main Street") == "Main Street"

* Msc.getStreet("") == ""

* Msc.getStreet (" 123 ") = "

* Msc.getStreet (" Main 123 ") == "Main 123"

* @arams a string assuned to have address data

* @eturn a string with the extracted street name

*

/
public static String getStreet(String s) {
int left;
if (s==null) return null;
for (left=0; left<s.length(); left++){
i f(java.l ang. Character.isLetter(s.charAt(left))) {

br eak;
} elseif (left == s.length()) {
return "";
} else {
return s.substring(left);
}
}
return "";

64

CHAPTER 4

Data Access Using JDBC

This chapter describes how to use Java Database Connectivity (JDBC) to

access data.

These topics are discussed:

Name Page
Overview 66
JDBC Concepts and Terminology 67
Differences Between Client- and Server-Side JDBC 68
Connections and Permissions 69
Using JDBC to Access Data 70
The JIDBCExamples Class 77

65

Overview

Overview

66

JDBC provides a SQL interface for Java applications. If you want to access
relational datafrom Java, you must use JDBC calls.

You can use JDBC with the Adaptive Server SQL interfacein either of two
ways:

« JDBC ontheclient — Java client applications can make JDBC calls to
Adaptive Server using the Sybase jConnect JDBC driver.

» JDBC onthe server — Java classes installed in the database can make
JDBC calls to the database using the JDBC driver internal to Adaptive
Server.

The use of JDBC calls to perform SQL operations is essentially the same in
both contexts.

This chapter provides sample classes and methods that describe how you might
perform SQL operations using JDBC. These classes and methods are not
intended to serve as templates, but as general guidelines.

CHAPTER 4 Data Access Using JDBC

JDBC Concepts and Terminology

JDBC isaJava APl and astandard part of the Java class libraries that control
basic functions for Java application development. The SQL capabilities that
JDBC provides are similar to those of ODBC and dynamic SQL.

The following sequence of eventsistypical of a JDBC application:

1

Create a Connection object — Call thgetConnection() class method of
theDriverManager class to create@onnection object. This establishes a
database connection.

Generate &atement object — Use th€onnection object to generate a
Satement object.

Pass a SQL statement to ghatement object — If the statement is a query,
this action returns ResultSet object.

The ResultSet object contains the data returned from the SQL statement,
but provides it one row at a time (similar to the way a cursor works).

Loop over the rows of the results set — Callrtbet() method of the
ResultSet object to:

* Advance the current row (the row in the result set that is being
exposed through theesultSet object) by one row.

* Return a Boolean value (true/false) to indicate whether there is a row
to advance to.

For each row, retrieve the values for columns irRéseltSet object — use
thegetint(), getString(), or similar method to identify either the name or
position of the column.

67

Differences Between Client- and Server-Side JDBC

Differences Between Client- and Server-Side JDBC

Thedifference between JDBC on the client and in the database server isin how
aconnection is established with the database environment.

68

Client-side JDBC — Requires the Sybase jConnect JDBC driver to
establish a connection. The connection is established by passing
arguments to theriverManager.getConnection() method. The database
environment is an external application from the perspective of the Java
client application.

Server-side JDBC — When JDBC is used within the database server, a
connection already exists. A value of “jdbc:default:connection” is passed
to DriverManager.getConnection(), which provides the JDBC

application the ability to work within the current user connection. This is
a safe and efficient operation because the client application has already
passed the database security to establish the connection.

You can write JDBC classes to run both at the client and at the server by
employing a single conditional statement for constructing the URL.

An external connection requires the machine name and port number, while
the internal connection requires one of these values:

e jdbc:default:connection
e jdbc:sybase:ase

e jdbc:default

CHAPTER 4 Data Access Using JDBC

Connections and Permissions

Connection defaults — From server-side JDBC, only the first call to
getConnection("jdbc:default:connection") creates a new connection
with the default values.

Subsequent calls return a wrapper of the current connection with all
connection properties unchanged.

Access permissions — Like all Java classes in the database, classes
containing JDBC statements can be accessed by any user. There is no
equivalent of thgrant execute statement that grants permission to

execute procedures, and there is no need to qualify the name of a class with
the name of its owner.

Execution permissions— Java classes are executed with the permissions of
the connection executing them. This behavior is different from that of
stored procedures, which execute with the permissions of the owner.

69

Using JDBC to Access Data

Using JDBC to Access Data

Java applications that hold some or al classesin the database have significant
advantages over traditional SQL stored procedures.

This section describes how you can use JDBC to perform thetypical operations

of aSQL application. The examples are extracted from the class
JDBCExamples, which is described in “The JDBCExamples Class” on page
77 and inbSYBASE/$SYBASE_ASE/sample/JavaSgl (UNIX) or
%SYBASEY%\Ase-12_0\sample\JavaSgl (Windows NT).

JDBCExamples illustrates the basics of a user interface and shows the internal
coding techniques for SQL operations.

Overview of the JDBCExamples Class

70

The JJDBCExamples class uses theddress class described in “Sample Java
Classes” on page 11. To execute these examples on your machine, install the
Address class on the server and include it in the Java CLASSPATH of the
jConnect client.

You can call the methods abBCExamples from either a jConnect client or
Adaptive Server.

Note You must create or drop stored procedures from the jConnect client. The
Adaptive Server internal driver does not suppostte procedure anddrop
procedure statements.

JDBCExamples class methods perform the following SQL operations:
e Create and drop an example talep:

create table xnmp (id int, nane varchar(50), hone Address)
e Create and drop a sample stored procednoet:

create procedure inout @d int, @ewnane varchar(50),
@ewhone Address, @l dnane varchar (50) output, @l dhone
Addr ess out put as

sel ect @l dnane = nane, @l dhome = hone from xnp

where id=@d
updat e xnp set nane=@ewnane, hone = @ewhone
where id=@d

CHAPTER 4 Data Access Using JDBC

e Insert a row into themp table.
e Select a row from themp table.
e Update a row of themp table.

e Call the stored procedurrout, which has both input parameters and
output parameters of datatygesa.lang.String andAddress.

JDBCExamples operates only on thanp table andnout procedure.

The main() and serverMain() Methods
JDBCExamples has two primary methods:
. main() — is invoked from the command line of the jConnect client.

e serverMain() — performs the same actionsnaagin(), but is invoked
within Adaptive Server.

All actions of theJDBCExamples class are invoked by calling one of these
methods, using a parameter to indicate the action to be performed.

Using main()
You can invoke thenain() method from a jConnect command line as follows:

“

java JDBCExamples server - nane:
port - nunber ?user= user - nane&password= password’ action

You can determine server-name and port-number from your interfacesfile.
user-name and password are your user name and password. If you omit
&password=password, the default is the empty password. Here are two
examples:

“antibes:4000?user=smith&password=1x2x3"
“antibes:4000?user=sa”

Make sure that you enclose the parameter in quotation marks.

The action parameter can be create table, create procedure, insert, select,
update, or call. It is case insensitive.

You can invoke JDBCExamples from ajConnect command line to create the
table xmp and the stored procedure inout as follows:

java JDBCExamples “antibes:4000?user=sa” CreateTable
java JDBCExamples “antibes:4000?user=sa” CreateProc

71

Using JDBC to Access Data

You caninvoke JDBCExamples for insert, select, update, and call actions as
follows:

java JDBCExamples “antibes:4000?user=sa” insert
java JDBCExamples “antibes:4000?user=sa” update
java JDBCExamples “antibes:4000?user=sa” call
java JDBCExamples “antibes:4000?user=sa” select

These invocations display the message “Action performed.”
To drop the tablemp and the stored procedur®ut, enter:

java JDBCExamples “antibes:4000?user=sa” droptable
java JDBCExamples “antibes:4000?user=sa” dropproc

Using serverMain()

Note Becausethe server-side JDBC driver doesnot support create procedure
or drop procedure, create the table xmp and the example stored procedure
inout with client-side calls of the main() method before executing these
examples. Refer to “Overview of the JDBCExamples Class” on page 70.

After creatingkmp andinout, you can invoke theerverMain() method as
follows:

sel ect JDBCExanpl es. serverMai n(’insert’)
SZI ect JDBCExanpl es. server Mai n(’ sel ect’)
ggl ect JDBCExanpl es. server Mai n(’ update’)
SZI ect JDBCExanpl es. serverMain(’'call’)
go

Note Server-side calls aferverMain() do not require aerver-name:port-
number parameter; Adaptive Server simply connects to itself.

Obtaining a JDBC Connection: the Connecter() Method

Bothmain() andserverMain() call theconnecter() method, which returns a
JDBCConnection object. TheConnection object is the basis for all subsequent
SQL operations.

72

CHAPTER 4 Data Access Using JDBC

Both main() and serverMain() call connecter() with a parameter that

specifies the IDBC driver for the server- or client-side environment. The

returned Connection object is then passed as an argument to the other methods

of the JDBCExamples class. By isolating the connection actionsin the
connecter() method, JDBCExamples’ other methods are independent of their
server- or client-side environment.

Routing the Action to Other Methods: the doAction() Method

ThedoAction() method routes the call to one of the other methods, based on
theaction parameter.

doAction() has theConnection parameter, which it simply relays to the target
method. It also has a paramdtmale, which indicates whether the call is
server- or client-sideConnection raises an exception if eithereate

procedure ordrop procedure is invoked in a server-side environment.

Executing Imperative SQL Operations: the doSQL() Method

ThedoSQL() method performs SQL actions that require no input or output
parameters such aseate table, create procedure, drop table, anddrop
procedure.

doSQL() has two parameters: t@®nnection object and the SQL statement it
is to performdoSQL() creates a JDB&atement object and uses it to execute
the specified SQL statement.

Executing an update Statement: the UpdateAction() Method

TheupdateAction() method performs a Transact-SQtdate statement. The
update action is:

String sql = "update xmp set name = ?, home = ? where id = ?";
It updates th@ame andhome columns for all rows with a giveid value.

Theupdate values for thaéame andhome column, and théd value, are

specified by parameter markers ()dateAction() supplies values for these
parameter markers after preparing the statement, but before executing it. The
values are specified by the JDB&String(), setObject(), andsetint()

methods with these parameters:

73

Using JDBC to Access Data

e The ordinal parameter marker to be substituted
* The value to be substituted
For example:

pstnt.setString(1l, nane);
pstnt. set Cbj ect (2, hone);
pstnt.setInt(3, id);

After making these substitutiongpdateAction() executes thepdate
statement.

To simplify updateAction(), the substituted values in the example are fixed.
Normally, applications would compute the substituted values or obtain them as
parameters.

Executing a select Statement: the selectAction() Method

74

TheselectAction() method executes a Transact-S§glect statement:
String sql = "select name, home from xmp where id=?";

Thewhere clause has a parameter marker (?) for the row to be selected. Using
the JDBCsetInt() methodselectAction() supplies a value for the parameter
marker after preparing the SQL statement:

PreparedStatement pstmt = con.prepareStatement(sql);
pstmt.setint(1, id);

selectAction() then executes theelect statement:

ResultSet rs = pstmt.executeQuery();

Note For SQL statements that return no results,dass®L () and
updateAction(). They execute SQL statements with ¢kecuteUpdate()
method.

For SQL statements that do return results, usexteuteQuery() method,
which returns a JDB®ResultSet object.

TheResultSet object is similar to a SQL cursor. Initially, it is positioned before
the first row of results. Each call of thext() method advances tiResultSet
object to the next row, until there are no more rows.

CHAPTER 4 Data Access Using JDBC

selectAction() requires that the ResultSet object have exactly one row. The
selecter() method invokes the next method, and checks for the case where
ResultSet has no rows or more than one row.

if (rs.next()) {
nanme = rs.getString(1);
honme = (Address)rs. get vject(2);
if (rs.next()) {
throw new Exception("Error: Select returned multiple rows");
} else { // No action

}

} else { throw new Exception("Error: Select returned no rows");

}

In the above code, the call of methods getString() and getObject() retrieve

the two columns of the first row of the result set. The expression
“(Address)rs.getObject(2)" retrieves the second column as a Java object, and
then coerces that object to thedress class. If the returned object is not an
Address, then an exception is raised.

selectAction() retrieves a single row and checks for the cases of no rows or
more than one row. An application that processes a multipl&esultSet

would simply loop on the calls of text() method, and process each row as
for a single row.

Calling a SQL Stored Procedure: the callAction() Method
ThecallAction() method calls the stored procedumeut:

create proc inout @d int, @ewnanme varchar(50), @ewhonme Address,
@l dnane varchar (50) output, @l dhone Address output as

sel ect @l dnane = nane, @| dhone = hone from xnp where i d=@d
updat e xnmp set nane=@ewnane, hone = @ewhone where i d=@d

This procedure has three input paramet@isl{ @newname, and@newhome)
and two output parameter®¢6ldname and@oldhome). callAction() sets the
name and home columns of the row of tatsip with the ID value of@id to

the valueg@newname and@newhome, and returns the former values of those
columns in the output parameteém@®ldname and @oldhome.

Theinout procedure illustrates how to supply input and output parameters in a
JDBC call.

callAction() executes the following call statement, which prepares the call
statement:

75

Using JDBC to Access Data

Cal | abl eStatenent cs = con.prepareCall ("{call inout (?, 2, ?2, ?2, 2}");
All of the parameters of the call are specified as parameter markers (?).

callAction() supplies values for the input parameters using JDBC setint(),
setString(), and setObject() methods that were used in thedoSQL(),
updatAction(), and selectAction() methods:

cs.setInt(1, id);
cs.setString(2, newNane);
cs. set Obj ect (3, newHone) ;

These set methods are not suitable for the output parameters. Before executing
the call statement, callAction() specifies the datatypes expected of the output
parameters using the JDBC registerOutParameter() method:

cs.regi sterQut Paraneter (4, java.sql.Types. VARCHAR);
cs. regi sterQut Paranet er (5, com sybase. j dbc. Param JAVA_OBJECT) ;

callAction() then executes the call statement and obtains the output values

using the same getString() and getObject() methods that the selectAction()
method used:

int res = cs.executeUpdate();
String ol dName = cs.getString(4);
Addr ess ol dHome = (Address)cs. get Obj ect (5);

76

CHAPTER 4 Data Access Using JDBC

The JDBCExamples Class

/1 An exanple class illustrating the use of JDBC facilities
/'l with the Java in Adaptive Server feature.

Il

I/ The methods of this class performa range of SQL operations.
/1 These nethods can be invoked either froma Java client,

/1 using the main nethod, or fromthe SQ server, using

/1 the internal Mai n et hod.

Il

i mport java.sql.*; /1 JDBC
public class JDBCExanpl es {

{

The main() Method

// The main nethod, to be called froma client-side command |ine

Il

public static void main(String args[]) {
if (args.length!=2) {

Systemout. println("\'n Usage:
+ "java External Connect server-nane: port-nunber
action ");
Systemout.println(" The action is connect, createtable,
+ "createproc, drop, "
+ "insert, select, update, or call \n");

return;
}
tryf
String server = args[0];
String action = args[1].toLowerCase();
Connection con = connecter(server);
String workString = doAction(action, con, client);
Systemout.printIn("\n" + workString + "\n");
} catch (Exception e) {
Systemout.println("\n Exception: ");
e.printStackTrace();
}

The internalMain() Method
/1 A JDBCExanpl es met hod equivalent to 'main’,

77

The JDBCExamples Class

/1 to be called fromSQ or Java in the server

public static String internal Main(String action) {
try {
Connection con = connecter("default");
String workString = doAction(action, con, server);
return workString;
} catch (Exception e) {
if (e.getMessage().equals(null)) {

return "Exc: " + e.toString();
} else {
return "Exc - " + e.getMessage();

}

The connecter() Method

/1 A JDBCExanpl es nethod to get a connection.
/1 1t can be called fromthe server with argunent 'default’,
/1 or froma client, with an argunent that is the server nane.

public static Connection connecter(String server)
throws Exception, SQ.Exception, C assNotFoundException ({

String forName="";
String url="";

if (server=="default") { // server connection to current server
forName = "sybase. asej dbc. ASEDri ver";

url = "jdbc: default: connection";

} else if (server!="default") { //client connection to server
for Nanme= "com sybase. j dbc. SybDri ver";

url = "jdbc: sybase: Tds: "+ server;
}
String user = "sa";

String password = "";

/1 Load the driver

Cl ass. f or Name(f or Nane) ;

/1 Get a connection

Connection con = DriverManager. get Connection(url,
user, password);

return con;

78

CHAPTER 4 Data Access Using JDBC

The doAction() Method

/1 A JDBCExanples nethod to route to the 'action’ to be performed

public static String doAction(String action, Connection con,
String | ocale)
t hrows Exception {

String createProcScript =

" create proc inout @d int, @ewnane varchar(50),
@ewhone Address,

+ " @l dnane varchar (50) output, @l dhone Address
output as "

+ " select @l dnane = nane, @l dhone = hone from xnp
where id=@d "

+ " update xnp set nanme=@ewnane, honme = @ewhone
where id=@d ";

String createTabl eScript =

' create table xnp (id int, nane varchar(50),
hone Address)"

String dropTabl eScript = "drop table xmp ";
String dropProcScript = "drop proc inout ";

)

String insertScript = "insert into xnmp "

+ "values (1, 'Joe Smith’', new Address(’ 987 Shore’,
112345))";

String workString = "Action (" + action +) ;

if (action.equal s("connect")) {
wor kString += "perfornmed";
} else if (action.equals("createtable")) {
wor kString += doSQ.(con, createTableScript);
} else if (action.equal s("createproc")) {
if (locale.equal s(server)) {
t hrow new exception (CreateProc cannot be perforned
in the server);
} else {
workString += doSQ.(con, createProcScript);
}
} else if (action.equal s("droptable")) {
wor kString += doSQL(con, dropTabl eScript);
} else if (action.equal s("dropproc")) {
if (locale.equals(server)) {

79

The JDBCExamples Class

throw new exception (CreateProc cannot be perforned
in the server);
} else {
workString += doSQL(con, dropProcScript);
}
} else if (action.equals("insert")) {
workString += doSQ.(con, insertScript);
} else if (action.equal s("update")) {
wor kSt ring += updat eAction(con);
} else if (action.equals("select")) {
workString += sel ect Action(con);
} else if (action.equals("call")) {
workString += call Acti on(con);
} else { return "lInvalid action: " + action ;

}

return workString;

The doSQL() Method
/1 A JDBCExanpl es nethod to execute an SQL statenent.

public static String doSQ (Connection con, String action)
throws Exception {

Statenent stmt = con.createStatenent();
int res = stnt.executeUpdate(action);
return "perforned";

The updateAction() Method

/1 A nethod that updates a certain row of the 'xnp' table.
/1 This nethod illustrates prepared statenents and paraneter markers.

public static String updateActi on(Connection con)
throws Exception {

String sql = "update xnp set nane = ?, honme = ? where id = ?";
int id=1;

Address hone = new Address("123 Main", "98765");

String nane = "Sam Brown";

PreparedSt at ement pstnt = con. prepareStatenment (sql);

80

CHAPTER 4 Data Access Using JDBC

pstnt.setString(1, nane);
pstnt.set Ghject (2, hone);
pstnt.setlint(3, id);

int res = pstnt.executeUpdate();
return "perforned";

The selectAction() Method

/1 A JDBCExanpl es nethod to retrieve a certain row
/1 of the 'xnmp’ table.

/1 This method illustrates prepared statenents, paraneter narkers,

// and result sets.

public static String sel ectAction(Connection con)
t hrows Exception {

String sql = "select name, hone fromxnp where id=?";
int id=1;
Address hone = null;
String nane = ""
String street = ""
String zip ="";
Prepar edSt at ement pstmt = con. prepareStatenment (sql);
pstnt.setint(1, id);
Resul tSet rs = pstnt. executeQuery();
if (rs.next()) {
nanme = rs.getString(1);
home = (Address)rs. get vject(2);
if (rs.next()) {
throw new Exception("Error: Select returned
multiple rows");
} else { // No action

}
} else { throw new Exception("Error: Select returned no rows");
}
return "- Row with id=1: name("+ name +)

+ " street(" + hone.street +) zip("+ home.zip +);

The callAction() Method

/1 A JDBCExanpl es nmethod to call a stored procedure,
/1 passing input and output paraneters of datatype String

81

The JDBCExamples Class

/1
/1
Il

82

and Address.
This nmethod illustrates callable statenents, paraneter narkers,
and result sets.

public static String call Acti on(Connection con)
throws Exception {

Cal | abl eStatenent c¢cs = con.prepareCall ("{call inout
(2, 2,2, 2, 21");
int id=1;

String newName = "Frank Farr";

Addr ess newHone = new Address("123 Farr Lane", "87654");

cs.setlnt(1l, id);

cs.setString(2, newNane);

cs. set Obj ect (3, newHone);

cs.regi sterCQut Paraneter (4, java.sql.Types. VARCHAR) ;

cs. regi sterQut Paraneter (5, com sybase.jdbc. Param JAVA OBJECT) ;

int res = cs.executeUpdate();

String ol dNane = cs.getString(4);

Addr ess ol dHome = (Address)cs. get Obj ect (5);

return "- Od values of rowwth id=1: nanme("+ol dNane+)
street (" + oldHone.street + ") zip("+ oldHone.zip +);

CHAPTER 5

XML in the Database

This chapter uses examples to describe how you can use Javatools to
access Extensible Markup Language (XML) documents in Adaptive

Server.

These topics are discussed:
Name Page
Introduction 84
An Overview of XML 86
Using XML in the Adaptive Server Database 92
A Simple Example for a Specific Result Set 97
A Customizable Example for Different Result Sets 112

83

Introduction

Introduction

Like Hypertext Markup Language (HTML), XML isamarkup language and a
subset of Standardized General Markup Language (SGML). XML, however, is
more complete and disciplined, and it allows you to define your own
application-oriented markup tags. These properties make XML particularly
suitable for data interchange.

You can generate X ML-formatted documents from data stored in Adaptive
Server and, conversely, store XML documents, and data extracted from them,
in Adaptive Server. Many of the XML tools needed to generate and process
XML documents are written in Java. Javain Adaptive Server provides agood
base for XML-SQL applications using both universal and application-specific
tools.

This chapter first provides a general discussion of XML and how you can use
XML inthe Adaptive Server database. It then presents a series of examplesthat
you can use as guidelines for using XML in your Adaptive Server database.

Source Code and Javadoc

References

84

The source code for the Java classes described in this chapter is availablein
$SYBASE/$SYBASE_ASE/sample/JavaSal (UNIX) or %SYBASEY6\Ase-

12 _O\sampleé\Javasgl (Windows NT), which also contains Javadoc-generated
HTML pages with the specifications of the referenced packages, classes, and
methods.

This chapter presents a overview of XML. For detailed information, refer to
these Web documents.

e World Wide Web Consortium (W3Chat http://www.w3.0rg
e W3C, Document Object Model (DOMMxat http://www.w3.0rg/DOM/

 W3C, Extensible Markup Language (XML ™8t
http://www.w3.org/ XML/

 W3C, Extensible Stylesheet Language (XSa),
http://www.w3.0rg/TR/WD-xsl/

CHAPTER 5 XML in the Database

Sun Microsystems, Inc, Java™ Project X Technology Releasé 1,

http://developer.java.sun.com/developer/earlyAccess/xml/index.ht
ml

Megginson Technologies, SAX 1.0: The Simple API for XIVit,
http://www.megginson.com/SAX/

85

An Overview of XML

An Overview of XML

XML isamarkup language and subset of SGML. It was created to provide
functionality that goes beyond that of HTML for Web publishing and
distributed document processing.

XML islesscomplex than SGML, but more complex and flexiblethan HTML.
Although XML and HTML can usually be read by the same browsers and
processors, XML has characteristics that make it better able to share
documents:

¢ XML documents possess a strict phrase structure that makes it easy to find
and access data. For example, opening tags of all elements must have a
corresponding closing tag, for example, <p>A paragraph.<\p>.

» XML lets you develop and use tags that distinguish different types of data,
for example, customer numbers or item numbers.

» XML lets you create an application-specificument type, which makes
it possible to distinguish one kind of document from another.

» XML documents allow different views of the XML data. XML documents
contain only markup and content; they do not contain formatting
instructions. Formatting instructions are normally provided on the client
using Extensible Style Language (XSL) specifications.

A Sample XML Document

The sample Order document is designed for a purchase order application.
Customers submit orders, which are identified by a date and a customer ID.
Each order item has an item ID, an item name, a quantity, and a unit
designation.

It might display on screen like this:

86

CHAPTER 5 XML in the Database

ORDER
Date: July 4, 1999
Customer ID: 123

Customer Name; Acme Alpha

Items:
Item ID Item Name Quantity
987 Coupler 5
654 Connector 3 dozen
579 Clasp 1

A possible XML representation of the data for the order is:

<?xm version="1.0"?>

<Order >
<Dat €>1999/ 07/ 04</ Dat e>
<Cust oner | d>123</ Cust oner | d>
<Cust oner Name>Acrre Al pha</ Cust oner Nanme>

<ltenr

<ltem d> 987</Item d>
<I t emName>Coupl er </ | t emNanme>
<Quantity>5</Quantity>
</ltenr

<ltenp
<l tem d>654</1temnl d>
<I t emName>Connect or </ | t enNane>
<Quantity unit="12">3</ Quantity>
</ltenr

<ltenp
<ltem d>579</Item d>
<l t emNanme>d asp</ | t enNanme>
<Quantity>1</Quantity>
</ltenmpr

</ Or der >

The XML document for the order data consists of these parts:

* The XML declaration, <?xml version="1.0"?>, which identifies Order as
an XML document.

XML documents are represented as character data. In each document, the
character encoding (character set) is specified, either explicitly or
implicitly. To explicitly specify the character set, include it in the XML
declaration. For example:

87

An Overview of XML

<?xml version="1.0" encoding="1S0O-8859-1">

If you do not include the character set inthe XML declaration, the default,
which isUTFS8, is used. For example:

<?xml version="1.0"?>

Note When the default character sets of the client and server differ,
Adaptive Server bypasses normal character set trandations so that the
declared character set continues to match the actual character set. See
“Character Sets and XML Data” on page 91.

User-created element tags such as <Order>...</Order>,
<Customerld>...</Customerld>, <ltem>....</ltem>. In XML
documents, all opening tags must have a corresponding closing tag.

Text data such as “Acme Alpha,” “Coupler,” and “579.”

Attributes embedded in element tags such as <Quantity unit = “12">. This
kind of coding allows you the flexibility to customize elements.

A document with these parts, and with the element tags strictly nested, is called
awell-formed XML document. Note that in the example above element tags
describe the data they contain, and the document contains no formatting
instructions.

XML Document Types

88

A Document Type Definition (DTD) defines the structure of a class of XML
documents, making it possible to distinguish between classes. A DTD is a list
of element and attribute definitions unique to a class. Once you have set up a

DTD, you can reference a DTD in another document or embed the DTD in the
XML document.

Here is another example of an XML document:

<?xm version="1.0"7?>
<I nf 0>
<OneTag>1999/ 07/ 04</ OneTag>
<Anot her Tag>123</ Anot her Tag>
<Last Tag>Acne Al pha</ Last Tag>
<Thi ng>
<Thi ngl d> 987</ Thi ngl d>
<Thi ngNane>Coupl er </ Thi ngNane>
<Anount >5</ Anpunt >

CHAPTER 5 XML in the Database

<Thi ng/ >
<Thi ng>
<Thi ngl d>654</ Thi ngl
<Thi ngName>Connect er </ Thi ngNam
</ Thi ng>
<Thi ng>
<Thi ngl d>579</ Thi ngl d>
<Thi ngNanme>d asp</ Thi ngNanme>
<Amount >1</ Renew>
</ Thi ng>
</ I nfo>

This example, called Info, is awell-formed document and has the same
structure and data as the XML Order document. Nonetheless, it would not be
recognized by a processor designed for Order documents because each have
different DTDs.

The DTD for XML Order documentsis:

<IELEMENT Order (Date, Customerld, CustomerName,
ltem+)>

<IELEMENT Date (#PCDATA)>

<IELEMENT Customerld (#PCDATA)>

<IELEMENT CustomerName (#PCDATA)>

<IELEMENT Item (ltemld, IltemName, Quantity)>

<IELEMENT Itemld (#PCDATA)>

<IELEMENT ItemName (#PCDATA)>

<IELEMENT Quantity (#PCDATA)>

<IATTLIST Quantity units CDATA #IMPLIED>

This DTD specifies that:

« An order consists of these required elements: a date, a customer ID, a
customer name, and one or more items. “+” indicates one or more items.
These items are required. A question mark indicates an optional element
(for example, “CustomerName?”). An asterisk indicates that an element
can occur zero or more times (for example, “ltem*”).

* Elements defined by “(#PCDATA)” are character text.

e The “<ATTLIST...>" definition specifies that quantity elements have a
“units” attribute; the “#IMPLIED” specification indicates that the “units”
attribute is optional.

The character text of XML documents is not constrained. For example, there is
no way to specify that the text of a quantity element should be numeric, and
thus the following would be valid:

<Quantity unit="Baker’s dozen">three</Quantity>
<Quantity unit="six packs”>plenty</Quantity>

89

An Overview of XML

Restrictions on the text of elements are handled by applications that process
XML data.

An XML's DTD must follow the <?xml version="1.0"?> instruction. You can
either include the DTD within your XML document, or you can reference an
external DTD.

» Toreference a DTD externally, use something like this:

<?xml version="1.0"?>
<IDOCTYPE Order SYSTEM "Order.dtd">
<Order>

”<'/Order>
e Here’s how an embedded DTD might look:

<?xml version="1.0"?>

<IDOCTYPE Order [

<IELEMENT Order (Date, Customerld, CustomerName,
ltem+)>

<I[ELEMENT Date (#PCDATA)

<IELEMENT Customerld (#PCDATA)>
<IELEMENT CustomerName (#PCDATA)>
<IELEMENT Item (Itemld, ltemName, Quantity)>
<IELEMENT Itemld (#PCDATA)>

<I[ELEMENT ItemName (#PCDATA)>
<IELEMENT Quantity (#PCDATA)>

<IATTLIST Quantity units CDATA #IMPLIED>

>

<Order>
<Date>1999/07/04</Date>
<Customerld>123</Customerld>
<CustomerName>Acme Alpha</CustomerName>

<ltem>

</Ite'h'1>
</Order>

DTDs are not required for XML documents. However, avalid XML
document hasa DTD and conforms to that DTD.

XSL: Formatting XML Information

You can use XSL toformat XML documents. XSL specifications (stylesheets)
consist of aset of rulesthat define thetransformation of an XML document into
either an HTML document or a different XML document:

90

CHAPTER 5 XML in the Database

e XSL specifications that transform an XML document into HTML can
specify normal HTML formatting details in the output HTML.

e XSL specifications that transform an XML document into another XML
document can map the input XML document to an output XML document
with different element names and phrase structure.

You can create your own stylesheets for the display of particular classes for
particular applications. XSL is normally used with presentation applications
rather than with applications for data interchange or storage.

Character Sets and XML Data

If the declared character sets of your client and server differ, you must take care
when declaring the character set of your XML documents.

Every XML document has a character set value. If that encoding is not declared
in the XML declaration, the default value of UTF8 is assumed. The XML
processor, when parsing the XML data, reads this value and handles the data
accordingly. When the default character set of the client and server differ,
Adaptive Server bypasses normal character set conversions to ensure that the
declared character set and the actual character set remain the same.

* If you introduce an XML document into the database by providing the
complete text in the values clause ofrsert statement, Adaptive Server
translates the entire SQL statement into the server’s character set before
processing the insertion. This is the way Adaptive Server normally
translates character text, and you must make sure that the declared
character set of the XML document matches that of the server.

» If you introduce an XML document into the database usintgtext or
Open Client CT-Library or Open Client DB-Library programs, Adaptive
Server recognizes the XML document from the XML declaration and does
not translate the character set to that of the server.

* If you read an XML document from the database, Adaptive Server does
not translate the character set of the data to that of the client, thus
preserving the integrity of the XML document.

91

Using XML in the Adaptive Server Database

Using XML in the Adaptive Server Database

To use XML documents for datainterchange in Adaptive Server, you must be
able to store XML documents or the data that they contain in the database. To
determine how best to accomplish this, consider the following:

* Mapping and storage: What sort of correspondence between XML
documents and SQL data is most suitable for your system?

¢ Client or Server Considerations. Should the mapping take place on the
client or the server?

e Accessing XML in SQL: How do you want to access the elements of an
XML document in SQL?

The rest of this section discusses each of these considerations; the remainder of
the chapter provides these classes and methods you can use with XML:

» Asimple example to illustrate the basics of data storage and exchange of
XML documents

* A generalized example that you can customize for your own XML
documents

Mapping and Storage

There are three basic ways to store XML data in Adaptive Seshearent
storage, document storage, or hybrid storage, which is a mixture of both.

* Element storage— In this method, you extract data elements from an XML
document and store them as data rows and columns in Adaptive Server.

For example, using the XML Order document, you can create SQL tables
with columns for the individual elements of an ordzate, Customerld,
Customer Name, Itemld, ItemName, Quantity, andUnits. You can then
manage that data in SQL with normal SQL operations:

* To produce an XML document for Order data contained in SQL,
retrieve the data, and assemble an XML document with it.

* To store an XML document with new Order data, extract the elements
of that document, and update the SQL tables with that data.

» Document storage — In this method, you store an entire XML document in
a single SQL column.

92

CHAPTER 5 XML in the Database

For example, using the Order document, you can create one or more SQL
tables having a column for Order documents. The datatype of that column
could be:

e SQL text, or
e A generic Java class designed for XML documents, or
e A Java class designed specifically for XML Order documents

Hybrid storage — In this method, you store an XML document in a SQL
column, and also extract some of its data elements into separate columns
for faster and more convenient access.

Again, using the Order example, you can create SQL tables as you would
for document storage, and then include (or later add) one or more columns
to store elements extracted from the Order documents.

Advantages and Disadvantages of Storage Options

Each storage option has advantages and disadvantages. You must choose the
option or options best for your operation.

If you use element storage, all of the data from the XML document is
available as normal SQL data that you can query and update using SQL
operations. However, element storage has the overhead of assembling and
disassembling the XML documents for interchange.

Document storage eliminates the need for assembling and disassembling
the data for interchange. However, you need to use Java methods to
reference or update the elements of the XML documents while they are in
SQL, which is slower and less convenient than the direct SQL access of
element storage.

Hybrid storage balances the advantages of element storage and document
storage, but has the cost and complexity of redundant storage of the
extracted data.

Client or Server Considerations

This chapter describes Java methods for assembling and disassembling an
XML document and referencing or updating its elements. You can execute Java
methods either on the client or on the server, which is a consideration for
element storage and hybrid storage. Document storage involves little or no
processing of the document.

93

Using XML in the Adaptive Server Database

Element storage — If you map individual elements of an XML document
to SQL data, in most cases, the XML document is larger than the SQL
data. It is generally more efficient to assemble and disassemble the XML
document on the client and transfer only the SQL data between the client
and the server.

Hybrid storage — If you store both the complete XML document and
extracted elements, then it is generally more efficient to extract the data
from the server, rather than transfer it from the client.

Accessing XML in SQL

This chapter discusses three applications of XML in SQL. These applications
are organized in three layers:

94

Transact-QL statements such asnsert, select, andupdate for

referencing SQL columns and variables that contain XML documents.
These SQL operations use Java classes and methods to manipulate the
XML documents.

Java classesto contain XML documents and to access and update the
elements of those documents. There is an application-specific class for the
Order document type and a general class for arbitrary SQL result sets.

An XML parser, which is used by the Java classes to analyze and
manipulate XML documents.

The Java classes that are used in this chapter to demonstrate XML applications
areJXml, OrderXml, andResultSetXml.

JXml stores and parses XML. It does not validate XML documents. It is
designed as a base class for subclasses that:

» Validate specific XML document types
* Provide application-oriented methods
OrderXml andResultSetXml are two such subclasses.

TheOrderXml classes used to illustrate support for an application-specific
XML document typeOrderXml validates Order documents for the Order
DTD. You can us®rderXml methods to reference and update elements of
the Order document.

CHAPTER 5 XML in the Database

XML Parsers

e ResultSetXml represents SQL result sets. HuesultSetXml constructor
validates the ResultSet document for the ResultSet B&BultSetXml
methods are used to reference and update elements of the ResultSet
document.

TheResultSetXml class illustrates support for a general XML document
type capable of representing arbitrary SQL data.

“The OrderXml Class for Order Documents” on page 97 and “The
ResultSetXml Class for Result Set Documents” on page 116 describe these
classes and their methods and parameters. For Javadoc HTML pages with
detailed specifications for the classes and for source code, refer to
$SYBASE/$SYBASE_ASE/sample/JavaSgl (UNIX) or %SYBASEY6\Ase-

12 O\sample\Javasgl (Windows NT).

You can analyze XML documents and extract their data using SQL character-
string operations such asbstring, charindex, andpatindex. However, it is

more efficient to use Java in SQL and tools written in Java such as XML
parsers.

XML parsers can:

e Check that a document is well-formed and valid.

* Handle character-set issues.

* Generate a Java representation of a document’s parse tree.
e Build or modify a document’s parse tree.

* Generate a document’s text from its parse tree.

Many XML parsers are available with a free license or are in the public
domain. They normally implement two standard interfaces: the Simple API for
XML (SAX) and the Document Object Model (DOM).

* SAXis an interface for parsing. It specifies input sources, character sets,
and routines to handle external references. While parsing, it generates
events so that user routines can process the document incrementally, and
it returns a DOM object that is the parse tree of the document.

+ DOMis an interface for the parse tree of an XML document. It provides
facilities for stepping through and assembling a parse tree.

95

Using XML in the Adaptive Server Database

Applications that use the SAX and DOM interfaces are portable across XML
parsers.

96

CHAPTER 5 XML in the Database

A Simple Example for a Specific Result Set

This section provides a simple exampl e that demonstrates how you can store
XML documents or the data that they contain in an Adaptive Server database.

The example in this section, the XML Order document type, is designed for a
specific purchase-order application, and the Javamethods created for it assume
a specific set of SQL tables for storing purchase order data.

For amore generalized example, applicable to arange of SQL result sets, see
“A Customizable Example for Different Result Sets” on page 112:

The OrderXml Class for Order Documents

The example in this section uses @rderXml class and its methods for basic
operations on XML Order documents. The source code and Javadoc
specifications foOrderxml are inN$SYBASE/$SYBASE_ASE/sample/Javasyl.

OrderXml is a subclass of thexml class, which is specialized for XML Order
documents. Th@rderXml constructor validates the document for the Order
DTD. Methods of therderXml class support referencing and updating the
elements of the Order document.

Constructor: OrderXml(String)

Validates that th&ring argument contains a valid XML Order document,
and then constructs @rderXml object containing that document. For
example, “doc” is a Java string variable containing an XML Order
document, perhaps one read from a file:

jcs.xm .order.OrderXml ox = new jcs.xm . order. O der Xm (doc);

ConstructorOrderXml(date, customerld, dtdOption, server)
The parameters are all String.

This method assumes a set of SQL tables containing Order data. The
method uses JDBC to execute a SQL query that retrieves Order data for
the giverdate andcustomer|d. The method then assembles an XML Order
document with the data.

Theserver parameter identifies the Adaptive Server on which to execute
the query.

e If you invoke the method in a client environment, specify the server
name.

97

A Simple Example for a Specific Result Set

e If you invoke the method in Adaptive Server (in a SQL statement or
inisql), specify either an empty string or the string
“jdbc:default:connection,” which indicates that the query should be
executed on the current Adaptive Server

ThedtdOption parameter indicates whether you want the generated Order
to contain the DTD or to reference it externally.

For example:

jcs.xm . order. Order XM ox = new OrderXml(“990704", “123",
“external”, “antibes:4000?user=sa");

e void order2Sql(String ordersTableName, String server)

Extracts the elements of the Order document and stores them in a SQL
table created by theeateOrdertable() method ordersTableName is the
name of the target table. Therver parameter is as described for the
OrderXml constructor. For example,dk is a Java variable of type
OrderXmil:

ox.order2Sql(“current_orders”, “antibes:4000?user=sa”);

Thiscall extracts the e ements of the Order document contained in ox, and
uses JDBC to insert the extracted elements into rows and columns of the
table named current_orders.

e static void createOrderTable(String ordersTableName, String server)

Creates a SQL table with columns suitable for storing Order data:
customer_id, order_date, item_id, quantity, andunit. ordersTableName is
the name of the new table. Tsever parameter is as described for the
OrderXml constructor. For example:

jcs.xm . order. Order Xm . creat eOr der Tabl e

T

(“current_orders”, “antibes:4000?user=sa”);
e String getOrderElement(String elementName)

elementNameis “Date,” “Customerld,” or “CustomerName.” The method
returns the text of the element. For examplexif a Java variable of type
OrderXml:

String customerld = ox.getOrderElement(“Customerld”);
String customerName = ox.getOrderElement(“CustomerName”);
String date = ox.getOrderElement(“Date”);

* void setOrderElement(String elementName, String newValue)

98

CHAPTER 5 XML in the Database

elementNameisasdescribed for getOrderElement().The method setsthat
element to newValue. For example, if ox isaJava variable of type
OrderXml:

ox.setOrderElement(“CustomerName”, “Acme Alpha Consolidated”);
ox.setOrderElement(“Customerld”, “987a");
ox.setOrderElement(“Date”, “1999/07/05");

String getltemElement(int itemNumber, String elementName)

itemNumber is the index of an item in the ordelementNameis “Itemld,”
“ltemName,” or “Quantity.” The method returns the text of the item. For
example, ifox is a Java variable of tyg@rderXml:

String itemld = ox.getltemElement(2, “ltem|d”);
String itemName = ox.getltemElement(2, “ItemName”);
String quantity = ox.getltemElement(2, “Quantity”);

void setltemElement(int itemNumber, String elementName, String
newValue)

itemNumber andelementName are as described for tgetitemElement
methodsetitemElement sets the element lewValue. For example, ibx
is a Java variable of tygerderXml;

ox.setltemElement(2, “ltemld”, “44");
ox.setltemElement(2, “ltemName”, “cord”);
ox.setltemElement(2, “Quantity”, “3");

String getltemAttribute(int itemNumber, elementName,
attributeName)

itemNumber andelementName are described as fgetitemElement().
elementName andattributeName are both StringattributeName must be
“unit.” The method returns the text of the unit attribute of the item.

Note Since the Order documents currently have only one attribute, the
attributeName parameter is unnecessary. It is included to illustrate the
general case, for exampleoif is a Java variable of tyg@rderXmi:

String itemld = ox.getltemAttribute(2, “unit”);

void setltemAttribute (int itemNumber, elementName, attributeName,
newValue)

99

A Simple Example for a Specific Result Set

itemNumber, elementName, and attributeName are as described for
getltemAttribute(). elementName, attributeName, and newValue are
String. The method sets the text of the unit attribute of the item to
newValue. For example, if ox isa Javavariable of type OrderXml:

ox.setltemAttribute(2, “unit”, “13");
* void appendltem(newltemld, newltemName, newQuantity, newUnit)

The parameters are all String. The method appends a new item to the
document, with the given element values. For exampte, i a Java
variable of typeOrderxml:

ox.appendltem(“77”, “spacer”, “5”, “12");
* void deleteltem(int itemNumber)

itemNumber is the index of an item in the order. The method deletes that
item. For example, ibx is a Java variable of tyggrderXml:

ox. del etelten(2);

Creating and Populating SQL Tables for Order Data

In this section we create several tables. These tables are designed to contain
data from XML Order documents, so that we can demonstrate techniques for
element, document, and hybrid data storage.

Tables for Element Storage

The following SQL statements create SQL tablesomers, orders, anditems,
whose columns correspond with the elements of the XML Order documents.

create table custoners
(customer_id varchar(5) not null unique,
cust oner _nanme var char (50) not null)

create table orders
(customer _id varchar(5) not null,
order _date datetine not null,
item.id varchar(5) not null,
quantity int not null,
unit smallint default 1)

create table itens
(item.id varchar(5) unique,
i tem nane varchar (20))

100

CHAPTER 5 XML in the Database

These tables need not to have been specifically created to accommodate XML
Order documents.

Thefollowing SQL statements popul ate the tables with the datain the example
XML Order document (see “A Sample XML Document” on page 86):

insert into custoners val ues("123", "Acne Al pha")
insert into orders values ("123", "1999/05/07",
"987", 5, 1)

insert into orders values ("123", "1999/05/07",
"654", 3, 12)

insert into orders values ("123", "1999/05/07",
"579", 1, 1)

insert into itens values ("987", "Wdget")

nsert into itens val ues ("654",
"Medi um connecter™")

nsert into itens values ("579",
"Type 3 clasp")

Useselect to retrieve the Order data from the tables:

sel ect order_date as Date, c.custoner_id as Custonerld,
cust oner _nane as Cust oner Nane,

o.itemid as Itemd, i.itemnane as |temNane,
quantity as Quantity, o.unit as unit

fromcustomers c, orders o, itens i

where c. customner _id=o. customer_id and

o.itemid=i.itemid
Date Customerld CustomerName | Itemld ItemName Quantity Unit
July 4 1999 123 Acme Alpha 987 Coupler 5 1
July 4 1999 123 Acme Alpha 654 Connector 3 12
July 4 1999 123 Acme Alpha 579 Clasp 1 1

Tables for Document and Hybrid Storage

The following SQL statement creates a SQL table for storing complete XML
Order documents, either with or without extracted elements (for hybrid
storage).

create tabl e order_docs

(id char(10) unique,

custoner _id varchar(5) null, -- For an
extracted “Customerld” element

101

A Simple Example for a Specific Result Set

order_doc jcs.xm .order. Order Xm)

Using the Element Storage Technique

This section describes the element storage technique for bridging XML and
SQL.

e “Composing Order Documents from SQL Data” on page 102 discusses the
composition of an XML Order document from SQL data.

« “Decomposing Data from an XML Order into SQL” on page 103
discusses the decomposition of an XML Order document to SQL data.

Composing Order Documents from SQL Data

102

In this example, Java methods generate an XML Order document from the
SQL data in the tables created in “Creating and Populating SQL Tables for
Order Data” on page 100.

A constructor method of therderXml class maps the data. An call of that
constructor might be:

new j cs. xm . order. O der Xm ("990704", "123",
“external”, "antibes:4000?user=sa");

This constructor method uses internal JDBC operations to:

« Execute a SQL query for the Order data

¢ Generate an XML Order document with the data

e Return thedrderXml object that contains the Order document

You can invoke th@©rderXml constructor in the client or the Adaptive Server.

* If you invoke theOrderXml constructor in the client, the JDBC operations
that it performs use jConnect to connect to the Adaptive Server and
perform the SQL query. It then reads the result set of that query and
generates the Order document on the client.

» If you invoke theOrderXml constructor in the Adaptive Server, the JDBC
operations that it performs use the native JDBC driver to connect to the
current Adaptive Server and perform the SQL query. It then reads the
result set and generates the Order document in the Adaptive Server.

CHAPTER 5 XML in the Database

Generating an Order on the Client

i mport java.io.*;

import jcs.util.*;

Designed to be implemented on the client, main() invokes the constructor of
the OrderXml class to generate an XML Order from the SQL data. That
constructor executesaselect for thegiven date and customer id, and assembles
an XML Order document from the result.

public class Sql 20rderdient {
public static void main (String args[]) {

try{

jcs.xm . order.Order order =
new j cs. xm . order. Order Xm ("990704", "123",
“external”, "antibes:4000?user=sa");
FileUtil.string2File("Order-sql20rder.xml",
order.getXmlText());
} catch (Exception e) {
System.out.printin("Exception:");
e.printStackTrace();

}

Generating an Order on the Server

Designed for the server environment, the following SQL script invokes the
constructor of the OrderXml class to generate an XML Order from the SQL
data:

declare @order jcs.xml.order.OrderXml
select @order =
new jcs.xml.order.OrderXmi('990704', '123',

‘external’, ")
insert into order_docs (id, order_doc) values(“3”,
@order)

Decomposing Data from an XML Order into SQL

In this section, you extract elements from an XML Order document and store
them in the rows and columns of the SQL Orders tables. The examples
illustrate this procedure in both server and client environments.

You decompose the elements using the Java method order2Sql() of the
OrderXml class. Assume that xmlOrder is aJavavariable of type OrderXml:

xmlOrder.order2Sql(“orders_received”, “antibes:4000?user=sa”);

103

A Simple Example for a Specific Result Set

The order2Sql() call extracts the elements of the XML Order document
contained in variable xmlOrder, and then uses JDBC operations to insert that
datainto the SQL tableorders received. You can call this method on the client
or on Adaptive Server:

* Invoked from the clientprder2Sql() extracts the elements of the XML
Order document in the client, uses jConnect to connect to the Adaptive
Server, and then uses Transact-S3ert to place the extracted data into
the table.

* Invoked from the serveorder2Sql() extracts the elements of the XML
Order document in the Adaptive Server, uses the native JDBC driver to
connect to the current Adaptive Server, and then use Transadt:SEL
to place the extracted data into the table.

Decomposing the XML Document on the Client

Invoked from the client, theain() method of thedrder2SqlClient class
creates a table namerters received with columns suitable for Order data. It
then extracts the elements of the XML Order contained in th®fder.xml

into rows and columns akders received. It performs these actions with calls
to the static metho@rderXml.createOrderTable() and the instance method
order2Sql().

import jcs.util.*;
import jcs.xm.order.*;
import java.io.*;
i mport java.sql.*;
import java.util.x*;
public class Order2Sql dient {
public static void main (String args[]) {
tryf
String xm Order =
FileUtil.file2String("order.xm");
Order Xm . creat eOrder Tabl e("orders_recei ved",
"anti bes: 4000?user=sa");
xm Or der. order2Sql ("orders_received",
"anti bes: 4000?user=sa");
} catch (Exception e) {
System out. println("Exception:");
e.printStackTrace();

}

104

CHAPTER 5 XML in the Database

Decomposing the XML Document on the Server

Invoked from the server, the following SQL script invokes the OrderXml
constructor to generatean XML Order document from the SQL tables, and then
invokes the method OX.sql20rder(), which extracts the Order data from the
generated XML and insertsit into the orders_received table.

decl are @m order O der Xm

sel ect @m order = new Order Xm (' 19990704’ , '123',
"external’, ')

sel ect @m order>>order2Sqgl (' orders_received, ')

Using the Document Storage Technique

When using the document storage technique, you store a complete XML
document in asingle SQL column.This approach avoids the cost of mapping
the data between SQL and XML when documents are stored and retrieved, but
access to the stored elements can be slow and inconvenient.

Storing XML Order Documents in SQL Columns

This section provides examples of document storage from the client and from
the server.

Inserting an Order Document from a Client File

Thefollowing command-line call isrepresentative of how you caninsert XML
datainto Adaptive Server from aclient file. It copies the contents of the
Order.xml file (using the —I parameter) to the Adaptive Server and executesthe
SQL script (using the —Q parameter) using the contents of Order.xml as the
value of the question-mark (?) parameter.

java jcs.util.FileWil -A putstring -1 "Oder.xm" \
-Q"insert into order_docs (id, order_doc) \
values (‘1’, new jcs.xml.order.OrderXmli(?)) " \
—S "antibes:4000?user=sa"

Note The constructor invocation new jcs.xml.order.OrderXmi(?) validates the
XML Order document.

105

A Simple Example for a Specific Result Set

Inserting a Generated Order Document on the Server

Executed on the server, thefollowing SQL command generatesan XML Order

document from SQL data, and immediately inserts the generated XML
document into the column of the order_docs table.

insert into order_docs (ID, order_doc)
select “2”, new jcs.xml.order.OrderXml("990704", "123",
"external”, ")

Accessing the Elements of Stored XML Order Documents

We have created a table named order_docs, with a column named order_doc.
The datatype of the order_doc columnis OrderXml, which isaJava class that
contains an XML Order document.

The OrderXml class contains severa instance methods that let you reference
and update elements of the XML Order document. They are described in “The
OrderXml Class for Order Documents” on page 97. This section uses these

methods to update the Order document.

<?xm version="1.0"?>
<! DOCTYPE Order SYSTEM "Order.dtd">
<Order>
<Dat €>1999/ 07/ 04</ Dat e>
<Cust oner | d>123</ Cust oner | d>
<Cust oner Nane>Acne Al pha</ Cust oner Nane>
<ltenp
<Item d> 987</Item d>
<l t emNanme>Coupl er </ | t emNane>
<Quantity>5</Quantity>
</ltenr
<ltenp
<Item d>654</Iten d>
<It emNanme>Connect er </ | t emNanme>
<Quantity unit="12">3</Quantity>
</ltenr
<ltenp
<ltem d>579</Item d>
<l temNanme>C asp</ |t emNanme>
<Quantity>1</Quantity>
</ltenmpr
</ Order >

Each XML Order document has exactly dvate, Customerid, and
CustomerName, and zero or morems, each of which has atemid,
I[temName, andQuantity.

106

CHAPTER 5 XML in the Database

Client Access to Order Elements

The main() method of the OrderElements classis executed on the client. It

reads the Order.xml fileinto alocal variable, and constructs an Order Xml

document from it. The method then extracts the “header” eleni2ats (
Customerld, andCustomerName) and the elements of the first Item of the

Order, prints those elements, and finally updates those elements of the Order
with new values.

i mport java.io.*;
import jcs.util.*;
public class OderEl enents {
public static void main (String[] args) {
try{

String xm = FileWil.file2String("Oder.xm");
jcs.xm . order.Order Xml ox =
new j cs.xm . order. Order Xm (xm);

/1 Get the header el enments

String cname = ox. get O der El enent (" Cust omer Nane") ;
String cid = ox. get Order El ement (" Custonerld");
String date = ox.getOrderEl enent ("Date");

Il Get the elements for item1 (nunbering from 0)
String i Namel = ox.getltenEl enent (1, "IltenmNane");
String ildl = ox.getltenEl enent (1, "ltem d");

String iQL = ox.getltenEl ement (1, "Quantity");

String iU = ox.getltemAttribute(l, "Quantity", "unit");
System out . println("\nBEFORE UPDATE: ")

Systemout.println("\n "+date+ " "+ cname + " " +
cid);

Systemout.println("\n "+ i Nanel+" "+ildi+" "
+iQ +" " +iU+ "\n");

/1 Set the header elenents

ox. set Or der El enent (" Cust omer Nane", "Best Bakery"
ox. set Order El ement (" Customer|d", "531");

ox. set Order El ement ("Date", "1999/07/31");

I/l Set the elements for item1 (nunbering from 0)
ox.setltenEl enent (1, "ltemNane", "Flange");
ox.setltenEl enent (1, "ltemd", "777");
ox.setltenEl enent (1, "Quantity","3");
ox.setltemAttribute(l, "Quantity", "unit", "13");

/1 Get the updated header el ements

chame = ox.get Order El emrent (" Cust oner Nane") ;
cid = ox. get Order El enent ("Custonerld");
date = ox.getOrderEl enent ("Date");

107

A Simple Example for a Specific Result Set

/1 Get the updated elenents for iteml1l
(nunbering fromO0)

i Namel = ox.getltenEl enent (1, "ItenNane");

ildl = ox.getltenEl enent (1, "ltemd");

iQL = ox.getltenEl emrent (1, "Quantity");

iU=ox.getltemAttribute(l, "Quantity", "unit");

System out . println("\nAFTER UPDATE: ");

Systemout.println("\n "+date+ " "+ cname + " " +
cid);

Systemout.printin("\n "+ i Namel+" "+ild1l+"
+iQ +" " +iU+ "\n");

/1 Copy the updated docunent to another file
FileUtil.string2File("O der-updated. xm",
ox. get Xm Text ())

} catch (Exception e) {
System out. println("Exception:");
e.printStackTrace();

}

After implementing the methodsin OrderElements, the Order document
stored in the file Order-updated.xml is:

<?xm version="1.0"7?>
<I DOCTYPE Order SYSTEM ' Order.dtd >
<Or der >
<Dat €>1999/ 07/ 31</ Dat e>
<Cust oner | d>531</ Cust oner | d>
<Cust oner Nane>Best Bakery</ Cust onmer Nane>
<l tenr
<ltem d> 987</Item d>
<l t emNanme>Coupl er </ | t emNane>
<Quantity>5</Quantity>
</ltenpr
<l tenr
<ltem d>777</1temnl d>
<l t emNane>Fl ange</ | t enNanme>
<Quantity unit="13">3</ Quantity>
</lten>
<l tenr
<ltem d>579</Item d
<l temNane>d asp</ |t emNane
<Quantity>1</Quantity>
</lten>

108

CHAPTER 5 XML in the Database

</ Order >

Server Access to Order Elements

The preceding example showed uses of get and set methods in a client
environment. You can also call those methodsin SQL statementsin the server:

sel ect order_doc>>get Order El ement (" Cust onmer1d"),
order _doc>>get O der El enent (" Cust oner Nane"),
order _doc>>get Or der El enent (" Dat e")
from order_docs

sel ect order_doc>>getltenEl enent(1, "ltemd"),
order _doc>>get | tenEl enent (1, "ItenmNane"),
order _doc>>get | tenEl enent (1, "Quantity"),
order_doc>>getltemAttribute(l, "Quantity", "unit")
from order_docs

updat e order_docs

set order_doc = order_doc>>setltentl enent (1, "ItenNane",
"Wench")
updat e order_docs
set order_doc = order_doc>>setltentl ement (2, "ltem d", "967")
sel ect order_doc>>getltentl enent (1, "ItenName"),

order _doc>>getltenEl enent (2, "ltem d")
from order_docs

updat e order_docs
set order_doc = order_doc>>setltemAttribute(2, "Quantity",
lluni tlll " 6II)

sel ect order_doc>>getltemAttribute(2, "Quantity", "unit")
from order_docs

Appending and Deleting Iltems in the XML Document

The Order class provides methods for adding and removing items from the
Order document.

You can append a new item to the Order document with the appenditem()
method, whose parameters specify Itemld, ItemName, Quantity, and units for
the new item:

updat e order_docs
set order_doc = order_doc>>appendlten("864",
"Bracket", "3","12")

109

A Simple Example for a Specific Result Set

appenditem() is avoid method that modifies the instance. When you invoke
such amethod in an update statement, you reference it as shown, asif it were
an Order-valued method that returns the updated item.

You delete an existing item from the Order document using deleteltem(). The
deleteltem() parameter specifies the number of theitem to be deleted. The
numbering begins with zero, so the following command del etes the second
item from the specified row.

updat e order_docs
set order_doc = order_doc>>del etelten(1)
where id = “1”

Using the Hybrid Storage Technique

In the hybrid storage technique, you store the complete XML document in a
SQL column and, at the same time, store elements of that document in separate
columns. This technique often balances the advantages and disadvantages of
element and document storage.

“Using the Document Storage Technique” on page 105 demonstrates how to

store the entire XML Order document in the single column
order_docs.order_doc. Using document storage, you must reference and
access th€ustomerld element in this way:

select order_doc>>getOrderElement(“CustomerID”) from order_docs
where order_doc>>getOrderElement(“CustomerID”) > “222"

110

To access Customer |d more quickly and conveniently than with the method
call, but without first decomposing the Order into SQL rows and columns:

1 Addacolumnto the order_docs table for the customer _id:

alter table order_docs
add customer_id varchar(5) null

2 Update that new column with extracted customer|d values.

update order_docs
set customer_id =
order_doc>>getOrderElement("Customerld")

3 Now, you can reference Customerld values directly:

select customer_id from order_docs where
customer _id > “222"

CHAPTER 5 XML in the Database

You can also define an index on the column.

Note This technique does not synchronize the extracted customer_id column
with the Customer|d element of the order_doc column if you update either
value.

111

A Customizable Example for Different Result Sets

A Customizable Example for Different Result Sets

This section demonstrates how you can store XML documents or the data that
they contain in an Adaptive Server database using the ResultSet class and its
methods for handling result sets. You can customize the ResultSet class for
your database application.

Contrast the ResultSet document type and the Order document type:

» The Order document type is a simplified example designed for a specific
purchase-order application, and its Java methods are designed for a
specific set of SQL tables for purchase order data. See “A Simple Example
for a Specific Result Set” on page 97.

* The ResultSet document type is designed to accommodate many kinds of
SQL result sets, and the Java methods designed for it include parameters
to accommodate different kinds of SQL queries.

For this example, you create and work with XMésultSet documents that
contain the same data as the XML Order documents.

First, create therderstable and its data:

create table orders

(custoner_id varchar(5) not null,

order _date datetine not null,

item.id varchar(5) not null,

quantity int not null,

unit smallint default 1)
insert into orders values ("123", "1999/05/07", "987", 5, 1)
insert into orders values ("123", "1999/05/07", "654", 3, 12)
insert into orders values ("123", "1999/05/07", "579", 1, 1)

Also, create the following SQL table to store complete XML ResultSet
documents:

create table resultset_docs
(id char(5),
rs_doc jcs.xm .resultsets. Result Set Xm)

The ResultSet Document Type

ResultSet documents consist of ResultSetMetaData followed by ResultSetData
as shown in the following general form:

112

CHAPTER 5 XML in the Database

<?xml version="1.0"?>
<IDOCTYPE ResultSet SYSTEM 'ResultSet.dtd’>
<ResultSet>

<ResultSetMetaData>

</ResultSetMetaData>
<ResultSetData>

</ResultSetData>
</ResultSet>

The ResultSetMetaData portion of an XML ResultSet consists of the SQL
metadata returned by the methods of the JDBC ResultSet class. The
ResultSetMetaData for the example result set is:

<Resul t Set Met aDat a
get Col umCount =" 7" >
<Col ummMet aDat a
get Col umbi spl aySi ze=" 25"
get Col uimLabel =" Dat e"
get Col uimNane=" Dat e"
get Col umType="93"
get Preci si on="0"
get Scal e="0"
i sAut ol ncrenment ="f al se"
i sCurrency="fal se"
i sDefinitel yWitabl e="fal se"
i sNul | abl e="fal se"
i sSi gned="fal se" />
<Col ummMet abDat a
get Col umbi spl aySi ze="5"
get Col uimLabel =" Cust oner | d"
get Col umNane=" Cust oner | d"
get Col umType="12"
get Preci si on="0"
get Scal e="0"
i sAut ol ncrenent ="f al se"
i sCurrency="fal se"
i sDefinitel yWitabl e="fal se"
i sNul | abl e="fal se"
i sSi gned="fal se" />
<Col ummMet aDat a

get Col umbi spl aySi ze="50"
get Col uimLabel =" Cust oner Nane"
get Col umNane=" Cust oner Nane"
get Col umType="12"
get Preci si on="0"

113

A Customizable Example for Different Result Sets

114

get Scal e="0"

i sAut ol ncrenent ="f al se"

i sCurrency="fal se"

i sDefinitelyWitabl e="fal se"
i sNul | abl e="fal se"

i sSi gned="fal se" />

<Col utmmMet aDat a

<Col

<Col

<Col

get Col ummbDi spl aySi ze="5"
get Col utmLabel ="Item d"
get Col uimNanme="1t emnl d"
get Col umType="12"

get Preci si on="0"

get Scal e="0"

i sAut ol ncrenent ="f al se"

i sCurrency="fal se"

i sDefinitelyWitabl e="fal se"
i sNul | abl e="fal se"

i sSi gned="fal se" />
umMet aDat a

get Col ummDi spl aySi ze=" 20"
get Col utmLabel ="t emNane"
get Col utmNane="1t emNane"
get Col umType="12"

get Preci si on="0"

get Scal e="0"

i sAut ol ncrenent ="f al se"

i sCurrency="fal se"

i sDefinitelyWitabl e="fal se"
i sNul | abl e="fal se"

i sSi gned="fal se" />
umMet aDat a

get Col ummbDi spl aySi ze="11"
get Col uimLabel =" Quantity"
get Col utmNane="Quantity"
get Col umType="4"

get Preci si on="0"

get Scal e="0"

i sAut ol ncrenent ="f al se"

i sCurrency="fal se"

i sDefinitelyWitabl e="fal se"
i sNul | abl e="fal se"

i sSi gned="true" />

ummMet aDat a

get Col ummbDi spl aySi ze="6"
get Col utmLabel ="uni t"

get Col utmNanme="uni t"

CHAPTER 5 XML in the Database

<Resul t Set Dat a>

<Row>
<Col um
<Col um
<Col um
<Col um
<Col um
<Col um
<Col um
</ Row>
<Row>
<Col um
<Col um
<Col um
<Col um
<Col um
<Col um
<Col um
</ Row>
<Row>
<Col um
<Col um
<Col um
<Col um
<Col um
<Col um
<Col um
</ Row>

get Col umType="5"
get Preci si on="0"
get Scal e="0"
i sAut ol ncrenent ="f al se"
i sCurrency="fal se"
isDefinitelyWitabl e="fal se"
i sNul | abl e="f al se"
i sSi gned="true" />
</ Resul t Set Met aDat a>

The names of the attributes of ColumnMetaData are simply the names of the
methods of the JDBC ResultSetMetaData class, and the values of those
attributes are the values returned by those methods.

The ResultSetData portion of an XML ResultSet document isalist of Row
elements, each having alist of Column elements. The text value of a Column
element isthe valuereturned by the IDBC getString() method for the column.
The ResultSetData for the exampleis:

nanme="Dat e" >1999- 07- 04 00: 00: 00. 0</ Col um>
nane=" Cust oner | d" >123</ Col utm>

nanme=" Cust onmer Nane" >Acnme Al pha</ Col um>
name="1temnl d">987</ Col um>

name="1t emNane" >Coupl er </ Col um>
name="Quanti ty" >5</ Col um>

nanme="uni t " >1</ Col utm>

nane="Dat e" >1999- 07- 04 00: 00: 00. 0</ Col um>
nane="Cust oner | d" >123</ Col utm>

nanme=" Cust onmer Nane" >Acme Al pha</ Col um>
nanme="1tenl d">654</ Col um>

nane="1t enNane" >Connect er </ Col unm>
name="Quanti t y">3</ Col um>

name="uni t">12</ Col utm>

nanme="Dat e" >1999- 07- 04 00: 00: 00. 0</ Col um>
nanme="Cust oner | d" >123</ Col utm>

nanme=" Cust onmer Nane" >Acnme Al pha</ Col um>
name="1temnl d">579</ Col um>

nanme="1t emNane" >C asp</ Col um>
name="Quantity">1</ Col um>

name="uni t " >1</ Col utm>

115

A Customizable Example for Different Result Sets

</ Resul t Set Dat a>
</ Resul t Set >

The XML DTD for the ResultSetXml Document Type
The DTD for the XML ResultSet document typeis:

<IELEMENT ResultSet (ResultSetMetaData ,
ResultSetData)>

<IELEMENT ResultSetMetaData (ColumnMetaData)+>

<IATTLIST ResultSetMetaData getColumnCount CDATA
#IMPLIED>

<IELEMENT ColumnMetaData EMPTY>

<IATTLIST ColumnMetaData
getCatalogName CDATA #IMPLIED
getColumnDisplaySize CDATA #IMPLIED
getColumnLabel CDATA #IMPLIED
getColumnName CDATA #IMPLIED
getColumnType CDATA #REQUIRED
getColumnTypeName CDATA #IMPLIED
getPrecision CDATA #IMPLIED
getScale CDATA #IMPLIED
getSchemaName CDATA #IMPLIED
getTablename CDATA #IMPLIED
isAutolncrement (truelfalse) #IMPLIED
isCaseSensitive (true|false) #IMPLIED
isCurrency (true|false) #IMPLIED
isDefinitelyWritable (true|false) #IMPLIED
isNullable (true|false) #IMPLIED
isReadOnly (true|false) #IMPLIED
isSearchable (truelfalse) #IMPLIED
isSigned (truelfalse) #IMPLIED
isWritable (true|false) #IMPLIED
>

<IELEMENT ResultSetData (Row)*>
<IELEMENT Row (Column)+>
<IELEMENT Column (#PCDATA)>
<IATTLIST Column

null (true | false) "false"

name CDATA #IMPLIED

The ResultSetXml Class for Result Set Documents

This section describes the ResultSetXml class that supports the ResultSet
DTD.

116

CHAPTER 5 XML in the Database

TheResultSetXml classissimilar to the OrderXml class. It isasubclass of the
JXmI class, which validates a document with the XML ResultSet DTD, and
also provides methods for accessing and updating the el ements of the contained
XML ResultSet document.

e Constructor: ResultSetXml(String)

Validates that the argument contains a valid XML ResultSet document and
constructs d&esultSetXml object containing that document. For example,

if doc is a Java String variable containing an XML ResultSet document,
read from a file:

jcs.xm . resul tset. Resul t Set Xml rsx =
new j cs. xm . resul tset. Resul t Set Xnl (doc);

e Constructor: ResultSetXml(query, cdataColumns, colNames,
dtdOption, server)

The parameters are all String.
The query parameter is any SQL query that returns a result set.

The server parameter identifies the Adaptive Server on which to execute
the query.

« If you invoke the method in a client environment, specify the server
name.

* Ifyou invoke the method in a Adaptive Server (in a SQL statement or
isql), specify either an empty string or the string
“jdbc:default:connection,” indicating that the query should be
executed on the current Adaptive Server.

The method connects to the server, executes the query, retrieves the SQL
result set, and construct&RasultSetXml object with that result set.

The cdataColumns parameter indicates which columns should be XML
CDATA sections. TheolNames parameter indicates whether the resulting
XML should specify “name” attributes in the “Column” elements. The
dtdOption indicates whether the resulting XML should include the XML
DTD for the ResultSet document type in-line, or reference it externally.

For example:

jcs.xm . resul tset. ResultSetXml rsx =
new j cs. xnm . resul tset. Resul t Set Xm
(“select1 as ‘a’, 2 as ‘'b’, 37, “none”, “yes”,
“external”, “antibes:4000?user=sa”);

117

A Customizable Example for Different Result Sets

118

This constructor call connects to the server specified in the last argument,
evaluates the SQL query given in the first argument, and returns an XML
ResultSet containing the data from the result set of the query. Thissimple
SQL query does not reference atable. If the constructor is called in the
Adaptive Server, then the server parameter should be an empty string or
jdbc: default; connection, to indicate a connection to the current server.

String toSqlScript(resultTableName, columnPrefix, writeOption,
goOption)

The parameters are all String.

The method returns a SQL script witkr@ate statement and a list of
insert statements that re-create the result set data.

TheresultTableName parameter is the table name for¢heate andinsert
statements. (SQL result sets do not specify a table name because they
could be derived from joins or unions.) TdawumnPrefix parameter is the
prefix to use in generated column names, which are needed for unnamed
columns in the result set. TheiteOption parameter indicates whether the
scriptis to include thereate statement, thiasert statements, or both. The
goOption parameter indicates whether the script is to includgdhe
commands, which are requiredisl and not supported in JDBC.

For example, ifsx is a Java variable of type ResultSetXmil:

rsx>>toSqlScript(“systypes_copy”, “column_", “both”, “yes”)

String getColumn(int rowNumber, int columnNumber)

rowNumber is the index of a row in the result settumnNumber is the
index of a column of the result set. The method returns the text of the
specified column.

For example, ifsxis a Java variable of type ResultSetXml:
sel ect rsx>>get Col um(3, 4)
String getColumn(int rowNumber, String columnName)

rowNumber is the index of a row in the result setumnName is the name
of a column of the result set. The method returns the text of the specified
column.

For example, ifsxis a Java variable of type ResultSetXml:
select rsx>>getColumn(3, “name”)

void setColumn(int rowNumber, int columnNumber, newValue)

CHAPTER 5 XML in the Database

rowNumber and columnNumber are as described for getColumn(). The
method sets the text of the specified column to newValue.

For example, if rsxis aJavavariable of type ResultSetXml:
select rsx = rsx>>setColumn(3, 4, “new value”)
void setColumn(int rowNumber, String columnName, newValue)

rowNumber andcolumnName are as described fgetColumn(). The
method sets the text of the specified columneeValue.

For example, ifsxis a Java variable of type ResultSetXml:
select rsx = rsx>>setColumn(3, “name”, “new value”)

Boolean allString(int columnNumber, String compOp, String
comparand)

columnNumber is the index of a column of the result empOp is a SQL
comparison operator (<, >, =, I=, <=, >sdmparand is a comparison
value. The method returns a value indicating whether the specified
comparison is true for all rows of the result set.

For example, ifsxis a Java variable of type ResultSetXml:
if rsx>>allString(3, “<”, “compare value”)...

Thisconditionistrueif in theresult set represented by rsx, for al rowsthe
value of column 3, is less than “compare value.” This is a String
comparison. Similar methods could be used for other data types.

Boolean someString(int columnNumber, String compOp, String
comparand)

columnNumber is the index of a column of the result empOp is a SQL
comparison operator (<, >, =, I=, <=, >sdmparand is a comparison
value. The method returns aa value indicating whether the specified
comparison is true for some row of the result set.

For example, ifsxis a Java variable of type ResultSetXml:
if rsx>>someString(3, “<”, “compare value”) ...

This condition istrueif in the result set represented by rsx, for some row
the value of column 3, is less than “compare value.”

119

A Customizable Example for Different Result Sets

Using the Element Storage Technique

This section uses the orderstable to illustrate mapping between SQL dataand
XML ResultSet documents.

e In*“Composing a ResultSet XML Document from the SQL Data” on page
120, we generate an XML ResultSet document from the SQL data. We
assume that we are thaginator of the XML ResultSet document. We
used the resulting XML ResultSet document to describe the ResultSet
DTD.

e In “Decomposing the XML ResultSet to SQL Data” on page 121, we re-
generate SQL data from the XML ResultSet document. We assume we are
therecipient of the XML ResultSet document.

Composing a ResultSet XML Document from the SQL Data

You can use Java methods to evaluate a given query and generate an XML
result set with the query’s data. This example uses a constructor method of the
ResultSetXml class. For example:

new j cs. xm . resul tset. Resul t Set Xm
(“select 1 as ‘a’, 2 as ‘b’, 3", “none”,
“yes”, “external”, “antibes:4000?user=sa”);

The method usesinternal JDBC operations to execute the argument query, and
then constructs the XML ResultSet for the query’s data.

We can invoke this constructor in a client or in the Adaptive Server:

e If you invoke the constructor in a client, specify a server parameter that
identifies the Adaptive Server to be used when evaluating the query. The
query is evaluated in the Adaptive Server, but the XML document is
assembled in the client.

e If you invoke the constructor in the Adaptive Server, specify a null value
or jdbc: default: connection for the server. The query is evaluated in the
current server and the XML document is assembled there.

Generating a ResultSet in the Client

120

Themain() method of therderResultSetClient class is invoked in a client
environmentmain() invokes the constructor of tiResultSetXml class to
generate an XML ResultSet. The constructor executes the query, retrieves its
metadata and data using JDBRE&sultSet methods, and assembles an XML
ResultSet document with the data.

CHAPTER 5 XML in the Database

i nport java.io.*;
import jcs.util.*;
public class OrderResultSetdient {
public static void main (String[] args) {

try{
String orderQuery = "select order_date as Date,
c.custoner_id as Custonerld,
+ "custonmer _nane as Cust omer Nane,
+ "o.itemid as Itemd, i.itemnanme as |tenNanme, "
+ "quantity as Quantity, o.unit as unit "
+ "fromcustoners c, orders o, items i "
+ "where c.custoner_id=o.custoner_id and

o.itemid=i.itemid "
jcs.xm . resul tset. Resul t Set Xml rsx
= new jcs.xnl.resul tset. Resul t Set Xm (or der Query,
"none", "yes", "external",
"anti bes: 4000?user =sa");
FileWil.string2File("OrderResultSet.xm",
rsx. get Xm Text ());
} catch (Exception e) {
Systemout. println("Exception:");
e.printStackTrace();

Generating a ResultSet in Adaptive Server

The following SQL script invokes the constructor of the ResultSetXml class
in aserver environment:

declare @sx jcs.xm .resultset. Result Set Xm
select @sx = new jcs.xnm .resul tset. Resul t Set Xm
(“select1 as ‘a’, 2 as 'b’, 37, “none”, “yes”, “external”, *");

insert into resultset_docs values (“1”, @rsx)

Decomposing the XML ResultSet to SQL Data

In this section, you decompose an existing ResultSet document to SQL data.
« In section “Decomposing Data from an XML Order into SQL” on page
103, you invoke therder2Sql() method of thedrderXml class to

decompose an XML Order document into SQL dataer2Sql() directly
inserts the extracted data into a SQL table.

121

A Customizable Example for Different Result Sets

* In this example, the tmSqlScript() method of theResultSetXml class
decomposes an XML ResultSet document into SQL data. Instead of
directly inserting extracted data into a SQL table, howewsgIScript()
returns a SQL script with generatedert statements.

The two approaches are equivalent.

Decomposing the XML ResultSet Document in the Client

Themain() method oResultSetXml is executed in a client environment. It
copies the fileOrder ResultSet.xml, constructs &esultSetXml object

containing the contents of that file, and invokestt8!Script() method of

that object to generate a SQL script that recreates the data of the result set. The
method stores the SQL script in the fileler-resultset-copy.sql.

import java.io.*;
import jcs.util.*;
public class ResultSet2Sql{
public static void main (String[] args) {
try{
String xm = FileUil.file2String("O derResultSet.xm");
jcs.xm . resul tset. Resul t Set Xml rsx
= new jcs.xm . resul tset. Resul t Set Xm (xm);
String sql Scri pt
= rsx.toSql Scri pt ("orderresul tset_copy", "col _
"both", "no");
FileUil.string2File("order-resultset-copy.sql",
sql Script);
jcs.util. ExecSql . statenent (sql Script,
“antibes:4000?user=sa”);
} catch (Exception e) {
System.out.printin("Exception:");
e.printStackTrace();
}
}
}

The following is the SQL script generated by ResultSet2Sql.

set quoted_identifier on

create table orderresultset_copy (
Date datetime not null ,
Customerld varchar (5) not null ,
CustomerName varchar (50) not null ,
Itemld varchar (5) not null ,
ItemName varchar (20) not null ,
Quantity integer not null ,

122

CHAPTER 5 XML in the Database

unit smallint not null

)

insert into orderresultset_copy val ues (

' 1999- 07- 04 00: 00: 00. 0", 1123,
"Acnme Al pha’, 987, 'Wdget', 5, 1)
insert into orderresultset_copy val ues (
' 1999-07-04 00:00:00.0", '123",
"Acne Al pha', 654,
" Medi um connecter’, 3, 12)
insert into orderresultset_copy val ues (
' 1999-07-04 00:00:00.0", 123,
"Acne Alpha', '579', ’'Type 3 clasp’, 1, 1)

The SQL script includes the set quoted_identifier on command for those
cases where the generated SQL uses quoted identifiers.

Decomposing the XML ResultSet Document in Adaptive Server

The following SQL script invokes the toSqlScript() method in Adaptive
Server and then creates and popul ates a table with acopy of the result set data.

declare @sx jcs.xm .resultset. Result Set Xm

select @sx = rs_doc fromresultset_docs where id=1
select @script = @rsx>>toSqlScript(“resultset_copy”,

“column_", “both”, “no”)

declare @I integer

select @I = jcs.util. ExecSql.statement(@script, “")

Using the Document Storage Technique

This section shows examples of storing XML ResultSet documentsin single
SQL columns and techniques for referencing and updating the column
elements.

Storing an XML ResultSet Document in a SQL Column

Thefollowing SQL script generates an XML ResultSet document and storesit
inatable:

declare @query java.lang.StringBuffer

select @query = new java.lang.StringBuffer()

-- The following “appends” build up a SQL select statement in
the @query variable

-- We use a StringBuffer, and the append method, so that the
@query can be as long as needed.

123

A Customizable Example for Different Result Sets

sel ect @uery>>append("sel ect order_date as Date,
c.custoner_id as Custonerld, ")

sel ect @uery>>append("custoner_name as CustonerNane, ")

sel ect @uery>>append("o.itemid as Itemd, i.itemnane as
ItemName, ")

sel ect @uery>>append("quantity as Quantity, o.unit as unit ")

sel ect @uery>>append("fromcustoners ¢, orders o, itens i ")

sel ect @uer y>>append("where c. custoner_i d=o. custoner_id and
o.itemid=i.itemid ")

declare @sx jcs.xm .resultset. Result Set Xm

select @sx = new jcs.xm .resultset. Result Set Xm
(@uery>>toString(), 'none’, 'yes', ’'external’ , '")

insert into resultset_docs values("1", @sx)

Accessing the Columns of Stored ResultSet Documents

In “Storing an XML ResultSet Document in a SQL Column” on page 123 you
inserted a complete XML ResultSet document intarshdoc column of the
resultset_docstable. In this section, use methods offlesultSetXml class to
reference and update a stored ResultSet.

A Client-Side Call

Themain() method of theResultSetElements class is executed in a client
environment. It copies the filerder ResultSet.xml, constructs a ResultSetXml
document from it, and then accesses and updates the columns of the ResultSet.

import java.io.*;
import jcs.util.*;
public class ResultSetElements {
public static void main (String[] args) {
try{
String xm =
FileUtil.file2String("OrderResultSet.xm");
jcs.xm .resul tset.ResultSet Xm rsx
= new jcs.xm . resul tset. Resul t Set Xm (xm);
/1 Get the colums containing custonmer and date info
String cname = rsx.get Col um(0, "CustonerNane");
String cid = rsx. get Col um(0, "Custonerld");
String date = rsx.getColum(0, "Date");
/1l CGet the elenents for item1 (nunbering fromO0)
String i Namel = rsx.getColum(1l, "ItenName");
String ildl = rsx.getColum(1, "ltemd");
String i QL = rsx.getColum(1, "Quantity");
String iU = rsx.getColum(1, "unit");
System out. printl n("\nBEFORE UPDATE: ");

124

CHAPTER 5 XML in the Database

Systemout.printin("\n "+date+ " "+ cname + " " +
cid);

Systemout.println("\n "+ i Nanel+" "+ild1l+"
+ I @- + " " + i U + ll\ nll);

Il Set the elements for item1 (nunbering from 0)

rsx.setColum(1, "ltenNane", "Flange");

rsx.setColum(1, "ltemd", "777");

rsx.setColum(1l, "Quantity","3");

rsx.setColum(1, "unit", "13");

I/l Get the updated elements for item1 (nunbering
fromO0) iNanel = rsx.getColum(1l, "IltenNane");

ildl = rsx.getColum(1, "ltemd");

i QL = rsx.getColum(1, "Quantity");

iU=rsx.getColum(1l, "unit");

System out. println("\nAFTER UPDATE: ");

Systemout.println("\n "+date+ " "+ cname + " " +
cid);

Systemout.println("\n "+ i Nanel+" "+ild1i+" "
+iQ +" " +iU+ "\n");

/1l Copy the updated docunent to another file
FileUtil.string2File("O der-updated. xm",

rsx. get Xm Text());
} catch (Exception e) {
Systemout. println("Exception:");
e.printStackTrace();

}

The FileUtil.string2File() method stores the updated ResultSet in the file
Order-updated.xml. The ResultSetMetaData of the updated document is
unchanged. The updated ResultSetData of the document isasfollowswith new
valuesin the second item.

<Resul t Set Dat a>

<Row>
<Col umm nane="Dat e">1999- 07- 04 00: 00: 00. 0</ Col um>
<Col um nane="Cust oner | d">123</ Col utm>
<Col um namne="Cust ormer Nane" >Acne Al pha</ Col uim>
<Col umm nane="1tem d">987</ Col umm>
<Col um nane="1t emNane" >W dget </ Col unm>
<Col um nane="Quanti ty">5</ Col um>
<Col umm nane="uni t">1</ Col utm>

</ Row>

<Row>
<Col umm nane="Dat e" >1999- 07- 04 00: 00: 00. 0</ Col umm>

125

A Customizable Example for Different Result Sets

<Col um nane="Cust oner | d">123</ Col utm>
<Col um nane="Cust oner Nane" >Acne Al pha</ Col um>
<Col um narme="Item d">777</ Col unm>
<Col umm nane="1t emNane" >Fl ange</ Col um>
<Col umm nane="Quanti ty" >3</ Col um>
<Col um nane="uni t">13</ Col um>

</ Row>

<Row>
<Col um nane="Dat " >1999- 07- 04 00: 00: 00. 0</ Col umm>
<Col um name="Cust oner | d" >123</ Col unm>
<Col umm nane="Cust ormer Nanme" >Acne Al pha</ Col uim>
<Col um nane="1tem d">579</ Col unm>
<Col um nane="1t enNane" >Type 3 cl asp</ Col utm>
<Col um nane="Quanti ty">1</ Col um>
<Col um narme="uni t" >1</ Col um>

</ Row>

</ Resul t Set Dat a>
</ Resul t Set >

A Server-Side Script

Using the SQL script in “Storing XML Order Documents in SQL Columns”
on page 105, you stored complete XML ResultSet documents in tee
column of theesultset_docstable. The following SQL commands, executed in
a server environment, reference and update the columns contained in those
documents.

You can select columns by name or by number:
e Select the columns of row 1, specifying columns by name:

sel ect rs_doc>>get Col uim(1, "Date"),
rs_doc>>get Col um(1, "Custonerld"),
rs_doc>>get Col um(1, "CustomnerNane"),
rs_doc>>get Colum(1, "ltemd"),
rs_doc>>get Col um(1, "ItenNane"),
rs_doc>>get Colum(1l, "Quantity"),
rs_doc>>get Col um(1, "unit")

fromresul tset_docs

e Select the columns of row 1, specifying columns by number;

sel ect rs_doc>>get Col um(1, 0),
rs_doc>>get Col um(1, 1),
rs_doc>>get Col um(1, 2),
rs_doc>>get Col um(1, 3),
rs_doc>>get Col um(1, 4),
rs_doc>>get Col um(1, 5),

126

CHAPTER 5 XML in the Database

rs_doc>>get Col um(1, 6)
fromresul tset_docs

Specify some non-existing columns and rows. Those references return null
values.

Sel ect rs_doc>>getcolum(1l, "item d"),
rs_doc>>get col um(1, "xxx"),
rs_doc>>get col um(1, "Quantity"),
rs_doc>>getcol um(99, "unit"),
rs_doc>>get Col um(1, 876)
fromresul tset_docs

Update columnsin the stored ResultSet document:

update resultset_docs

set rs_doc = rs_doc>>set Col um(1, "ItenNane",
"Wench")

where id="1"
update resultset_docs

set rs_doc =rs_doc>>setColumn(l, "ltemld”, "967")
where id="1"
update resultset_docs

set rs_doc =rs_doc>>setColumn(1, "unit", "6")
where id="1"
select rs_doc>>getColumn(1, "ltemName"),
rs_doc>>getColumn(1, "ltemlid"),
rs_doc>>getColumn(l, "unit")
from resultset_docs
where id="1"

Quantified Comparisons in Stored ResultSet Documents

ResultSetXml contains two methods, allString() and someString(), for
quantified searches on columns of a ResultSetXML document. To illustrate
these two methods, first create some example rows in the order_resultstable.

Theorder_resultstable has been initialized with one row, whose id = “1” and
whosers_doc column contains the original Order used in all examples.

The following statements copy that row twice, assigmiialues of “2” and
“3” to the new rows. Therder_resultstable now has three rows, wiith
column values of “1,” “2,” and “3” and the original Order.

insert into resultset_docs(id, rs_doc) select "2", rs_doc
fromresultset_docs where id="1"
insert into resultset_docs (id, rs_doc) select "3", rs_doc
fromresultset_docs where id="1"

127

A Customizable Example for Different Result Sets

The following statements modify the row with anid column value of “1” so
that all three items have &emld of “100":

update resul tset_docs
set rs_doc = rs_doc>>set Colum(0, "Item d", "100")

where id="1"

updat e resul tset_docs

set rs_doc = rs_doc>>set Colum(1, "Iltem d", "110")
where id="1"

updat e resul tset_docs
set rs_doc = rs_doc>>set Colum(2, "lItem d", "120")
where id="1"

The followingupdate statement modifies the row witti = “3” so that its
second item (from 0) has #temid of “999":

updat e resul tset_docs
set rs_doc = rs_doc>>setColum(2, "Item d", "999")
where id="3"

The followingselect statement displays tti@ column and the thrdéemid
values for each row:

select id, rs_doc>>get Col um(0, "ltemd"),
rs_doc>>get Colum(1, "ltemd"),
rs_doc>>get Colum(2, "ltem d")
fromresultset_docs

The results of theelect are:

1 100 110 120
2 987 654 579
3 987 654 999

Note the following:

e The row withid of “2” is the original Order data.

* The row withid of “1" has been modified so thall Itemlds for that row

are less than “200.”

¢ The row withid of “3"” has been modified so thedme Itemld for that row

is greater than or equal to “9999,”

The following expresses the these quantifications witlaililsering() and
someString() methods:

select id, rs_doc>>allString(3, "<", "200") as “ALL test”

from resultset_docs

select id, rs_doc>>someString(3, ">=", "999") as “SOME test”

from resultset_docs

128

CHAPTER 5 XML in the Database

select id as “id for ALL test” from resultset_docs

where rs_doc>>allString(3, "<", "200")>>booleanValue() = 1
select id as “id for SOME test” from resultset_docs

where rs_doc>>someString(3, ">=", "999")>>booleanValue() = 1

The first two statements show the quantifier in the select list and give these

results:
Id “all” test ‘some” test
1 true false
false false
3 false true

Thelast two statements show the quantifier in thewhere clause and give these
results:

e Idfor “all” test = “3”
e Idfor “some” test = “1”
In the examples with the quantifier method inwheere clause, note that:

« Thewhere clause examples compare the method results with an integer
value of 1. SQL does not support the Boolean datatype as a function value,
but instead treats Boolean as equivalent to integer values 1and 0, for true
and false.

« Thewhere clause examples use theoleanValue() method. The
allString() andsomeString() methods return type java.lang.Boolean,
which is not compatible with SQL integer. The JavaleanValue()
method returns the simple Boolean value from the Boolean object, which
is compatible with SQL integer. This behavior is a result of merging the
SQL and Java type systems.

The quantifier methods return java.lang.Boolean instead of simply Java
boolean so that they can return null when the column is out of range, which is
consistent with the SQL treatment of out-of-range conditions.

The following statements show quantifier references that specify column 33,
which does not exist in the data:

select id, rs_doc>>allString(33, "<", "200") as “ALL test”

from resultset_docs

select id as “id for ALL test” from resultset_docs

where rs_doc>>allString(33, "<", "200")>>hooleanValue() = 1

129

A Customizable Example for Different Result Sets

Id “all” test

1 NULL
NULL

3 NULL

The id for the “all” test = (empty).

Using the Hybrid Storage Technique

For faster and easier access to@hgiomer|D element, add a negustomer_id
column to theesultset_docstable, and populate it with extract€dstomer| D
elements:

alter table resultset_docs
add custonmer_id varchar(5) null
updat e resul tset_docs
set custoner_id = rs_doc>>get Col uim(1, "Custonerld")

XML ResultSet Documents: Invalid XML Characters

This section describes two techniques for dealing with XML markup
characters in the result set.

When data values contain XML markup characters, you can enclose these
values in a CDATA section.

¢ When column names are quoted identifiers that contain XML markup
characters, you can substitute the quotes and markup characters with CML
entity symbols.

Each technique is described in the following sections.

Using CDATA Sections

Thecdata parameter of thResultSetXml constructor indicates which (if any)
columns of the SQL result set contain character data to be bracketed as CDATA
sections in the output XML. Theslata parameter can be “all,” “none,” or a

string of zero or one characters, where a “1” in the I-th position indicates that
the I-th column should be bracketed as a CDATA section.

130

CHAPTER 5 XML in the Database

For example, create the table cdata in which data values in columns 2, 3, and
4 contain XML markup characters that must be bracketed as CDATA section
in the output:

create table cdata (
idint,
a varchar (250),
b var char (250),
¢ varchar (250)
)
go
insert into cdata val ues (
1,
"<p>some sanpl es: </ p>first
<l i >second",
X >y |l w &z",
"X >y || wé&z"

)
Thefollowing SQL statement generates an XML ResultSet document for this
table, specifying a value “0111” for thelata parameter.

insert into resultsets (id, rs)
val ues ("2", new jcs.xm .resultset. ResultSetXm (
"select * fromcdata", '0111', ’'yes’, 'external’, '"))

This SQL statement generates a SQL script for that XML ResultSet:

update resultsets

set script =
rs>>t 0Sql Scri pt (" mar kup_col _nanes",
"col _", "both", "yes")

where id="2"

The following utility calls retrieve the XML ResultSet and its SQL script:

java jcs.util.FileUil -S "$SERVER' -A getstring -O cdata.xm \
-Q "select new jcs.util.StringWap(rs>>getXm Text()) from
resul tsets where id="2""

java jcs.util.FileWil -S "$SERVER' - A getstring -O cdata. script\

-Q "select newjcs.util.StringWap(script) fromresultsets
where id="2""

This is the XML ResultSet:

<?xm version="1.0"7?>
<! DOCCTYPE Resul t Set SYSTEM ' Resul t Set.dtd >
<Resul t Set >

<Resul t Set Met aDat a get Col umCount ="4" >
<Col umMet aDat a get Col uimbDi spl aySi ze="11" get Col umLabel ="i d"

131

A Customizable Example for Different Result Sets

get Col utmNane="i d" get Col umType="4" get Preci si on="0" get Scal e="0"
i sAutol ncrement ="fal se" isCurrency="fal se" isDefinitelyWitable="fal se"
i sNul | abl e="fal se" isSigned="true" />
<Col umMet aDat a get Col umDi spl aySi ze="250" get Col unmmLabel ="a"
get Col utmNane="a" get Col umType="12" get Preci si on="0" get Scal e="0"
i sAutol ncrement ="fal se" isCurrency="fal se" isDefinitelyWitable="fal se"
i sNul | abl e="fal se" isSigned="fal se" />
<Col umMet aDat a get Col utmDi spl aySi ze="250" get Col ummLabel ="b"
get Col utmNane="b" get Col umType="12" get Preci si on="0" get Scal e="0"
i sAut ol ncrement ="fal se" isCurrency="fal se" isDefinitelyWitable="fal se"
i sNul | abl e="fal se" isSigned="fal se" />
<Col umMet aDat a get Col umDi spl aySi ze="250" get Col ummLabel ="c"
get Col utmNane="c" get Col umType="12" get Preci si on="0" get Scal e="0"
i sAutol ncrement ="fal se" isCurrency="fal se" isDefinitelyWitable="fal se"
i sNul | abl e="fal se" isSigned="fal se" />
</ Resul t Set Met aDat a>
<Resul t Set Dat a>
<Row>
<Col um nare="i d" >1</ Col urm>
<Col um nare="a">
<! [CDATA[<p>sone sanpl es:
</ p>firstsecond]]>
</ Col um>
<Col um namne="b" >
<I[CDATA[X > Yy || w & z]]>
</ Col um>
<Col um name="c" >
<I[CDATA[X >y || w& z]]>
</ Col um>
</ Row>
</ Resul t Set Dat a>
</ Resul t Set >

Thisisthe SQL script:

set quoted_identifier on
create tabl e markup_col _nanmes (
idinteger not null ,
a varchar (250) not null
b varchar (250) not null ,
¢ varchar (250) not null

)
insert into markup_col _nanes val ues (
1,
' <p>sone sanpl es: </ p>firstsecond",
X >y ||l w &2z,
X >y || wé&zZ

132

CHAPTER 5 XML in the Database

Column Names

The XML generated for a SQL result set specifies the column names of the
result set in the ResultSetM etaData section and in the ResultSetData section.

The following SQL select specifies aresult set;

select 1 as “A>2", 2 as “B & 3", 3 as “A<<b”, 4 as
"D “"or™ e”

The result set has asingle row, whose column valuesare 1, 2, 3, and 4. The
column names of those columns are quoted identifiers that contain XML
markup characters.

Since the ResultSetXml document for such aresult set specifies the column
namesin XML attributes, the quotation marks and XML markup charactersin
those names must be replaced with XML entity symbols.

This problem cannot be handled with CDATA sections, since you cannot use
CDATA sectionsin attribute values.

Thefollowing is a SQL script that generates the ResultSetXml document for
the result set, then generates the SQL script for that ResultSetXml document.

Store the generated ResultSetXml document in the following table:

create table resultsets

(id char(5) unique,

rs jcs.xml.resultsets.ResultSetXml null,
script java.lang.String null)

The following SQL statement generates the XML ResultSet document and
storesit into the resultsets table:

insert into resultsets (id, rs)
values ("1", new jcs.xml.resultsets.ResultSetXmi(
"select1as ™A >2" 2as"™b &3,
3 as "™a<<b"™, 4 as "d """or"" e" "
'none’, 'yes', 'external’, "))

This SQL statement generates the SQL script for the XML ResultSet:

update resultsets
set script = rs>>toSqlScript("markup_col_names", "col_",
”Create", nyesn)

where id="1"

133

A Customizable Example for Different Result Sets

The following utility calls retrieve the XML ResultSet and its SQL script into
client files cdata.xml and cdata.script.

java jcs.util.FileUil -S "$SERVER' -A getstring -O cdata. xm \
-Q "select new jcs.util.StringWap(rs>>getXm Text()) from
resul tsets where id="2""
java jcs.util.FileUtil -S "$SERVER' -A getstring -O cdata. script\
-Q"select new jcs.util.StringWap(script) fromresultsets
where id="2""

The XML ResultSet document for the CDATA exampleis:

<?xm version="1.0"7?>
<! DOCTYPE ResultSet SYSTEM ' ResultSet.dtd >
<Resul t Set >
<Resul t Set Met aDat a get Col utmCount =" 4" >
<Col umMet aDat a get Col umbDi spl aySi ze="11"
get Col uimLabel ="A > 2" get Col utmNane="A > 2"
get Col uimType="4" get Preci si on="0" get Scal e="0"
i sAut ol ncrement ="fal se" isCurrency="fal se"
isDefinitelyWitabl e="fal se" isNullable="fal se"
i sSi gned="true" />
<Col ummMet aDat a get Col umbDi spl aySi ze="11"
get Col utmLabel ="b & 3" get Col umNane="b & 3"
get Col uimType="4" get Preci si on="0" get Scal e="0"
i sAut ol ncrement ="fal se" isCurrency="fal se"
isDefinitelyWitabl e="fal se" isNullable="fal se"
i sSi gned="true" />
<Col ummMet aDat a get Col umDi spl aySi ze="11"
get Col utmLabel =" a<<b" get Col utTmNane="a<<b"
get Col uimType="4" get Preci si on="0" get Scal e="0"
i sAut ol ncrement ="fal se" isCurrency="fal se"
isDefinitelyWitabl e="fal se" isNullable="fal se"
i sSi gned="true" />
<Col ummMet aDat a get Col umbDi spl aySi ze="11"
get Col utmLabel ="d "or’ e" get Col umNanme="d "or’ e"
get Col uimType="4" get Preci si on="0" get Scal e="0"
i sAut ol ncrement ="fal se" isCurrency="fal se"
isDefinitelyWitable="fal se" isNullable="fal se"
i sSi gned="true" />
</ Resul t Set Met aDat a>
<Resul t Set Dat a>
<Row>
<Col um name="A > 2">1</ Col um>
<Col um name="b & 3">2</ Col um>
<Col um nanme="a<<b" >3</ Col um>
<Col um nane="d ’'or’ e">4</Col um>

134

CHAPTER 5 XML in the Database

</ Row>
</ Resul t Set Dat a>
</ Resul t Set >

The following is the output SQL script for the CDATA example:

set quoted_identifier on

create table markup_col _names (
"A > 2" integer not null
"b & 3" integer not null
"a<<b" integer not null
"d ""or"" e" integer not null

135

A Customizable Example for Different Result Sets

136

CHAPTER 6

Debugging Java in the Database

This chapter describes the Sybase Java debugger and how you can use it

when developing Javain Adaptive Server.

These topics are discussed:

Name Page
Introduction to Debugging Java 138
Using the Debugger 140
A Debugging Tutorial 147

137

Introduction to Debugging Java

Introduction to Debugging Java

You can use the Sybase Java debugger to test Java classes and fix problems
with them.

How the Debugger Works

The Sybase Java debugger is a Java application that runs on a client machine.
It connects to the database using the Sybase jConnect JDBC driver.

The debugger debugs classes running in the database. You can step through the
source code for the files as long as you have the Java source code on the disk
of your client machine. (Remember, the compiled classes are installed in the

database, but the source code is not).

Requirements for Using the Java Debugger
To use the Java debugger, you need:

e AlJava runtime environment such as the Sun Microsystems Java Runtime
Environment, or the full Sun Microsystems JDK on your machine.

e The source code for your application on your client machine.

What You Can Do with the Debugger
Using the Sybase Java debugger, you can:

» Trace execution — Step line by line through the code of a class running in
the database. You can also look up and down the stack of functions that
have been called.

» Set breakpoints — Run the code until you hit a breakpoint, and stop at that
point in the code.

» Set break conditions — Breakpoints include lines of code, but you can also
specify conditions when the code is to break. For example, you can stop at
a line the tenth time it is executed, or only if a variable has a particular
value. You can also stop whenever a particular exception is thrown in the
Java application.

138

CHAPTER 6 Debugging Java in the Database

Browse classes — You can browse through the classes installed into the
database that the server is currently using.

Inspect and set variables — You can inspect the values of variables alter
their value when the execution is stopped at a breakpoint.

Inspect and break on expressions — You can inspect the value of a wide
variety of expressions.

139

Using the Debugger

Using the Debugger

This section describes how to use the Java debugger. The next section provides
asimpletutorial.

Starting the Debugger and Connecting to the Database

The debugger isthe JAR file Debug.jar, installed in your Adaptive Server
installation directory in $SYBASE/$SYBASE_ASE/debugger. If itisnot already
present, add thisfile as the first element to your CLASSPATH environment
variable.

Debug.jar contains many classes. To start the debugger you invoke the
sybase.vm.Debug class, which has amain() method.You can start the
debugger in three ways:

* Run thejdebug script located i$SYBASE/$SYBASE_ASE/debugger .

“A Debugging Tutorial” on page 147 provides a sample debugging session
using thedebug script.

¢ From the command line, enter:
j ava sybase. vm Debug

In the Connect window, enter a URL, user login name, and password to
connect to the database.

e From Sybase Central:

a Start Sybase Central and open the Ultilities folder, under Adaptive
Server Enterprise.

b Double-click the Java debugger icon in the right panel.

¢ Inthe Connect window, enter a URL, user login name, and password
to connect to the database.

Compiling Classes for Debugging

Java compilers such as the Sun Microsysfema compiler can compile Java
classes at different levels of optimization. You can opt to compile Java code so
that information used by debuggers is retained in the compiled class files.

140

CHAPTER 6 Debugging Java in the Database

If you compileyour source codewithout using switchesfor debugging, you can
still step through code and use breakpoints. However, you cannot inspect the
values of local variables.

To compile classes for debugging using the javac compiler, use the -g option:;

javac -g d assNane.java

Attaching to a Java VM

When you connect to a database from the debugger, the Connection window
shows al currently active JavaVMs under the user login name. If there are
none, the debugger goes into wait mode. Wait mode works like this:

* Eachtime a new Java VM is started, it shows up in the list.

e You may choose either to debug the new Java VM or to wait for another
one to appear.

* Once you have passed on a Java VM, you lose your chance to debug that
Java VM. If you then decide to attach to the passed Java VM, you must
disconnect from the database and reconnect. At this time, the Java VM
appears as active, and you can attach to it.

The Source Window
The Source window:

« Displays Java source code, with line numbers and breakpoint indicators
(an asterisk in the left column).

« Displays execution status in the status box at the bottom of the window.

« Provides access to other debugger windows from the menu.

The Debugger Windows
The debugger has the these windows:

» Breakpoints window — Displays the list of current breakpoints.

e Calls window — Displays the current call stack.

141

Using the Debugger

e Classes window — Displays a list of classes currently loaded in the Java
VM. In addition, this window displays a list of methods for the currently
selected class and a list of static variables for the currently selected class.
In this window you can set breakpoints on entry to a method or when a
static variable is written.

e Connection window — The Connection window is shown when the
debugger is started. You can display it again if you wish to disconnect from
the database.

e Exceptions window — You can set a particular exception on which to
break, or choose to break on all exceptions.

» Inspection window — Displays current static variables, and allows you to
modify them. You can also inspect the value of a Java expression, such as
the following:

* Local variables

» Static variables

e Expressions using the dot operator

e Expressions using subscripts []

» Expressions using parentheses, arithmetic, or logical operators.

For example, the following expressions could be used:

x[i].field
q+1
i =7
(i +1)*3

e Locals window — Displays current local variables, and allows you to
modify them.

e Status window — Displays messages describing the execution state of the
Java VM.

Options

The complete set of options for stepping through source code are displayed on
the Run menu. They include the following:

142

CHAPTER 6 Debugging Java in the Database

Function Shortcut key Description

Run F5 Continue running until
the next breakpoint, until
the Stop item is selected,
or until execution
finishes.

Step Over F7 or Space Steptothenextlineinthe
current method. If the
line steps into a different
method, step over the
method, not into it. Also,
step over any breakpoints
within methods that are
stepped over.

Step Into F8ori Step to the next line of
code. If theline stepsinto
adifferent method, step
into the method.

Step Out Fl11 Complete the current
method, and break at the
next line of the calling

method.

Stop Break execution.

Run to Selected F6 Run until the currently
selected lineis executed
and then break.

Home Fa Select the line where the

execution is broken.

Setting Breakpoints

When you set abreakpoint in the debugger, the JavaV M stops execution at that
breakpoint. Once execution is stopped, you can inspect and modify the values
of variables and other expressionsto better understand the state of the program.
You can then trace through execution step by step to identify problems.

Setting breakpoints in the proper placesis akey to efficiently pinpointing the
problem execution steps.

The Javadebugger allowsyou to set breakpoints not only on aline of code, but
on many other conditions. This section describes how to set breakpoints using
different conditions.

143

Using the Debugger

Breaking on a Line Number

When you break on aparticular line of code, execution stopswhenever that line
of code is executed.

To set abreakpoint on a particular line:
¢ Inthe Source window, select the line and press F9.
Alternatively, you can double-click a line.

When a breakpoint is set on a line number, the breakpoint is shown in the
Source window by an asterisk in the left column. If the Breakpoints window is
open, the method and line number is displayed in the list of breakpoints.

You can toggle the breakpoint on and off by repeatedly double-clicking or
pressing F9.

Breaking on a Class Method

When you break on a method, the break point is set on the first line of code in
the method that contains an executable statement.

To set a breakpoint on a class method:

1 From the Source window, choose Breaklew. The Break At window is
displayed.

2 Enter the name of a method in which you wish execution to stop. For
example:

JDBCExanpl es. sel ect er

stops execution whenever theBCExamples.selecter() method is
entered.

When a breakpoint is set on a method, the breakpoint is shown in the Source
window by an asterisk in the left column of the line where the breakpoint
actually occurs. If the Breakpoints window is open, the method is displayed in
the list of breakpoints.

Using Counts with Breakpoints

If you set a breakpoint on a line that is in a loop, or in a method that is
frequently invoked, you may find that the line is executed many times before
the condition you are really interested in takes place. The debugger allows you
to associate a count with a breakpoint, so that execution stops only when the
line is executed a set number of times.

144

CHAPTER 6 Debugging Java in the Database

To associate a count with a breakpoint:

1 From the Source window, select Break — Display. The Breakpoints
window is displayed.

2 Inthe Breakpoints window, click a breakpoint to select it.

3 Select Break - Count. A window is displayed with afield for entering a
number of iterations. Enter an integer value. The execution will stop when
the line has been executed the specified number of times.

Using Conditions with Breakpoints

The debugger alows you to associate a condition with a breakpoint, so that
execution stops only when the lineis executed and the condition is met.

To associate a condition with a breakpoint:

1 From the Source window, select Break - Display. The Breakpoints
window is displayed.

2 Inthe Breakpoints window, click a breakpoint to select it.

3 Sdect Break - Condition. A window is displayed with afield for entering
an expression. The execution will stop when the condition is true.

The expressions used here are the same as those that can be used in the
I nspection window, and include the following:

e Local variables

e Static variables

« Expressions using the dot operator
« Expressions using subscripts []

» Expressions using parentheses, arithmetic, or logical operators.

Breaking When Execution Is Not Interrupted

With a single exception, breakpoints can only be set when program execution
is interrupted. If you clear all breakpoints, and run the program you are
debugging to completion, you can no longer set a breakpoint on a line or at the
start of a method. Also, if a program is running in a loop, execution is
continuing and is not interrupted.

145

Using the Debugger

To debug your program under either of these conditions, select Run - Stop
from the Source window. This stops execution at the next line of Javacode that
is executed. You can then set breakpoints at other pointsin the code.

Disconnecting from the Database

When the program has run to completion, or at anytime during debugging, you
can disconnect from the database from the Connect window. Then, exit the

Source window and reconnect to the database after the debug program
terminates.

146

CHAPTER 6 Debugging Java in the Database

A Debugging Tutorial

This section takes you through a simple debugging session.

Before You Begin

The source code for the class used in thistutorial islocated in
$SYBASE/$SYBASE_ASE/sample/JavaSgl/manual -
examples/JDBCExamples.java.

Before you run the debugger, compile the source code using the javac
command with the -g option.

See “Creating Java Classes and JARs” on page 22 for complete instructions for
compiling and installing Java classes in the database.

Start the Java Debugger and Connect to the Database

You can start the debugger and connect to the database using a script, command
line options, or Sybase Central. In this tutorial, wejdsdleug to start the
debugger. You can use any database.

Follow these steps:
1 Start Adaptive Server.

2 If Java queries have not yet been executed on your server, run any Java
query to initialize the Java subsystem and start a Java VM.

3 Run theBSYBASE/$SYBASE ASE/debugger/jdebug script.jdebug
prompts you for these parameters:

a Machine name of the Adaptive Server
b Port number for the database

¢ Your login name

d Your password

e An alternate path tDebug.jar if its location is not in your
CLASSPATH

Once the connection is established, the debugger window displays a list of
available Java VMs or “Waiting for a VM.”

147

A Debugging Tutorial

Attach to a Java VM

To attach to a Java VM from your user session:

1

With the debugger running, connect to the sample database from isql as
thesa:

$SYBASE/ bin/isqgl -Usa -P

Note You cannot start Java execution from the debugger. To start a Java
VM you must carry out a Javaoperation from another connection using the
same user name.

Execute Java code using the following statements:

select JDBCExamples.serverMain(‘createtable’)
select JDBCExamples.serverMain(‘insert’)
select JDBCExamples.serverMain(‘'select’)

The Sybase Java VM startsin order to retrieve the Java objects from the
table. The debugger immediately stops execution of the Java code.

The debugger Connection window displaysthe JavaVMsbelonging to the
user in this format:
VM#: “ login_name, spid: spid#’

In the debugger Connection window, click the JavaVM you want and then
click Attach to VM. The debugger attachesto the JavaVM and the Source
window appears. The Connection window disappears.

Next, enable the Source window to show the source code for the method.
The source code is available on disk.

Load Source Code into the Debugger

The debugger looks for source code files. You need to make the
$SYBASE/$SYBASE ASE/sample/JavaSgl/manual-examples subdirectory
available to the debugger, so that the debugger can find source code for the
class currently executing in the database.

To add a source code location to the debugger:

1

148

From the Source window, select File - Source Path. The Source Path
window displays.

CHAPTER 6 Debugging Java in the Database

2 From the Source Path window, select Path—. Add. Enter the following
location into the text box:

$SYBASE/ $SYBASE_ASE/ sanpl e/ JavaSql /
manual - exanpl es/

The source code for the IDBCExamples class displaysin the window,
with the first line of the Query method serverMain() highlighted. The
Java debugger has stopped execution of the code at this point.

You can now close the Source Path window.

Step Through Source Code

You can step through source code in the Java debugger in several ways. In this
section we illustrate the different ways you can step through code using the
serverMain() method.

When execution pauses at aline until you provide further instructions, we say
that the execution breaks at the line. The lineisabreakpoint. Stepping
through codeis a matter of setting explicit or implicit breakpointsin the code,
and executing code to that breakpoint.

Following the previous section, the debugger should have stopped execution of
JDBCExamples.serverMain() at the first statement:

Examples
Here are some steps you can try:

1 Stepping into a function — press F7 to step to the next line in the current
method.

2 Press F8 to step into the functidemAction() in line 99.

3 Runto a selected line. You are now in functioAction(). Click on line
155 and press F6 to run to that line and break:

String workString = “Action(“ + action + “)”;

4 Set a breakpoint and execute to it — select line 179 and press F9 to set a
breakpoint on that line when running “isql> select
JDBCExamples.serverMain(‘select’)”:

workString + = selecter(con);

Press F5 to execute to that line.

149

A Debugging Tutorial

5 Experiment — try different methods of stepping through the code. End with
F5 to complete the execution.

When you have completed the execution, the Interactive SQL Data
window displays:

Action(select) — Row with id = 1: name(Joe Smith)

Inspecting and Modifying Variables

You can ingpect the values of both local variables (declared in a method) and
class static variablesin the debugger.

Inspecting Local Variables

150

You can inspect the values of local variables in a method as you step through
the code, to better understand what is happening.

To inspect and change the value of avariable:

1 Setabreakpoint at the first line of the selecter() method from the
Breakpoint window. Thislineis:

String sqgl = "select name, home from xmp where
id=?";

2 Inlinteractive SQL, enter the following statement again to execute the
method:

select JDBCExamples.serverMain(‘select’)
The query executes only as far as the breakpoint.
3 PressF7to step to the next line. The sgl variable has now been declared
and initialized.
4 From the Source window, select Window — Locals. The Local window
appears.

The Locals window shows that there are several local variables. Thesgl
variable has avalue of zero. All others are listed as not in scope, which
means they are not yet initialized.

You must add the variables to the list in the Inspect window.

5 Inthe Source window, press F7 repeatedly to step through the code. As
you do so, the values of the variables appear in the Locals window.

CHAPTER 6 Debugging Java in the Database

If alocal variableisnot asimpleinteger or other quantity, then as soon as
it isset a+ sign appears next to it. Thismeansthe local variable hasfields
that have values. You can expand alocal variable by double-clicking the +
sign or setting the cursor on the line and pressing Enter.

Complete the execution of the query to finish this exercise.

Modifying Local Variables
You can aso modify values of variables from the Locals window.

To modify alocal variable:

1

In the debugger Source window, set a breakpoint at the following linein
the selecter() method of the serverMain
class:

String sgl = "select name, hone from xnp where
i d=?";

Step past thisline in the execution.
Open the Locals window. Select theid variable, and select

Local - Modify. Alternatively, you can set the cursor on the line and press
Enter.

Enter avalue of 2 in the text box, and click OK to confirm the new value.
Theid variableis set to 2 in the Locals window.

From the Source window, press F5 to complete execution of the query. In
the Interactive SQL Data window, an error message displays indicating
that no rows were found.

Inspecting Static Variables
You can aso inspect the values of class-level variables (static variables).

To inspect a static variable:

1

From the debugger Source window, sel ect Window — Classes. The Classes
window is displayed.

Select aclassin the left box. The methods and static variables of the class
are displayed in the boxes on the right.

Select Static - Inspect. The Inspect window is displayed. It liststhe
variables available for inspection.

151

A Debugging Tutorial

152

CHAPTER 7 Reference Topics

This chapter presents information on several reference topics.

These topics are discussed:

Name Page
Assignments 154
Allowed Conversions 156
Transferring Java-SQL Objectsto Clients 157
Supported Java API Packages, Classes, and Methods 158
Invoking SQL from Java 161
Transact-SQL Commands from Java Methods 161
Datatype Mapping Between Java and SQL 166
Java-SQL ldentifiers 168
Java-SQL Class and Package Names 169
Java-SQL Column Declarations 170
Java-SQL Variable Declarations 171
Java-SQL Column References 172
Java-SQL Member References 173
Java-SQL Method Calls 175

153

Assignments

Assignments

This section defines the rules for assignment between SQL data items whose
datatypes are Java-SQL classes.

Each assignment transfers a source instance to atarget data item:

» For aninsert statement specifying a table that has a Java-SQL column,
refer to the Java-SQL column as the target data item and the insert value
as the source instance.

» For anupdate statement that updates a Java-SQL column, refer to the
Java-SQL column as the target data item and the update value as the source
instance.

* For aselect orfetch statement that assigns to a variable or parameter,
refer to the variable or parameter as the target data item and the retrieved
value as the source instance.

Note If the source is a variable or parameter, then it is a reference to an object
in the Java VM. If the source is a column reference, which contains a
serialization, then the rules for column references JaeaSQL Column
References on page 172) yield a reference to an object in the Java VM. Thus,
the source is a reference to an object in the Java VM.

Assignment Rules at Compile-Time

1 DefineSC andTC as compile-time class names of the source and target.
DefineSC_T andTC_T as classes nam&t andDT in the database
associated with the target. Similarly, def@_S andTC_S as classes
namedSC andDT in the database associated with the source.

2 SC_T must be the same &€ _T or a subclass &fC_T.

Assignment Rules at Runtime

154

Assume thabDT_SC is the same a3T_TC or its subclass.

CHAPTER 7 Reference Topics

DefineRSC as the runtime class name of the source value. Drfge S

as the class nam&$C in the database associated with the source. Define
RSC_T as the name of a claBSC_T installed in the database associated
with the target. If there is no claBSC_T, then an exception is raised. If
RSC_T is neither the same &€ _T nor a subclass afiC_T, then an
exception is raised

If the databases associated with the source and target are not the same
database, then the source object is serialized by its currentR$asss,

and that serialization is deserialized by the d&S_T that it will be
associated with in the database associated with the target.

If the target is a SQL variable or parameter, then the source is copied to the
target.

If the target is a Java-SQL column, then the source is serialized, and that
serialization is copied to the client.

155

Allowed Conversions

Allowed Conversions

Y ou can use convert to change the expression datatype in these ways:

156

Convert Java types where the Java datatype is a Java object type to the
SQL datatype shown in “Datatype Mapping Between Java and SQL” on
page 166. The action of tlkenvert function is the mapping implied by

the Java-SQL mapping

Convert SQL datatypes to Java types shown in “Datatype Mapping
Between Java and SQL” on page 166. The action afdheert function
is the mapping implied by the SQL-Java mapping.

Convert any Java-SQL class installed in the SQL system to any other Java-
SQL class installed in the SQL system if the compile-time datatype of the
expression (source class) is a subclass or superclass of the target class.
Otherwise, an exception is raised.

The result of the conversion is associated with the current database.

See “Using the SQL convert function for Java subtypes,” for a discussion of
the use of theonvert function for Java subtypes.

CHAPTER 7 Reference Topics

Transferring Java-SQL Objects to Clients

When a value whose datatype is a Java-SQL object typeis transferred from
Adaptive Server to aclient, the data conversion of the object depends on the
client type:

« Iftheclientis ansql client, thetoString() method of the object is invoked
and the result is truncated to varchar(50), which is transferred to the client.

« Ifthe client is a Java client that uses jConnect 4.0 or later, the server
transmits the object serialization to the client. This serialization is
seamlessly deserialized by jConnect to yield a copy of the object.

e Ifthe client is acp client:

» If the object is a column declarediasow, the serialized value
contained in the column is transferred to the client as a varbinary(255)
value.

» Otherwise, the serialized value of the object (the result of the
writeObject method of the object) is transferred to the client as an
image value.

157

Supported Java API Packages, Classes, and Methods

Supported Java API Packages, Classes, and Methods

Adaptive Server supports many but not all classes and methodsinthe JavaAPI.
In addition, Adaptive Server may impose security restrictions and
implementation limitations. For example, Adaptive Server does not support all
of the thread creation and manipul ation facilities of java.lang.Thread.

The supported packages are installed with Adaptive Server and are always
available. They cannot be installed by the user.

This section lists:
e Supported Java packages and classes
¢ Unsupported Java packages

e Unsupportedava.sql methods

Supported Java Packages and Classes

* java.io
e Externalizable
¢ Datalnput
e DataOutput
e ObjectinputStream
e ObjectOutputStream
e Serializable

* javalang

* java.lang.reflect

* java.math

« java.sql —the JDBC driver, see “Unsupported java.sql Methods” on page
159

e javatext
e java.util

e java.util.zip

158

CHAPTER 7 Reference Topics

Unsupported Java Packages
. java.applet
. java.awt
. java.awt.datatransfer
. java.awt.event
. java.awt.image
. java.awt.peer
. java.beans
. java.rmi
. java.rmi.dgc
. java.rmi.registry
. java.rmi.server
. java.security
. java.security.acl
. java.security.interfaces

. java.net

Unsupported java.sql Methods
e Connection.commit()
e Connection.getMetaData()
e Connection.nativeSQL()
e Connection.rollback()
e Connection.setAutoCommit()
* Connection.setCatalog()
e Connection.setReadOnly()
* Connection.setTransactionlsolation()
* DatabaseMetaData.* (all methods)

* PreparedStatement.setAsciiStream()

159

Supported Java API Packages, Classes, and Methods

160

PreparedStatement.setUnicodeStream()
PreparedStatement.setBinaryStream()
ResultSetMetaData.getCatalogName()
ResultSetMetaData.getSchemaName()
ResultSetMetaData.getTableName()
ResultSetMetaData.isCaseSensitive()
ResultSetMetaData.isReadOnly()
ResultSetMetaData.isSearchable()
ResultSetMetaData.isWritable()
Statement.getMaxFieldSize()
Statement.setMaxFieldSize()
Statement.setCursorName()
Statement.setEscapeProcessing()
Statement.getQueryTimeout()

Statement.setQueryTimeout()

CHAPTER 7 Reference Topics

Invoking SQL from Java

Adaptive Server supplies a native JDBC driver, java.sql, that implements
JDBC 1.1 specifications. It is described at http://Awww.javasoft.com. java.sq|
enables Java methods executing in Adaptive Server to perform SQL
operations.

Special Considerations
java.sgl.DriverManager.getConnection() accepts these URLSs:
o null
e “(the null string)
e jdbc:default:connection
When invoking SQL from Java some restrictions apply:

* A SQL query that is performing update actiomsdate, insert, ordelete)
cannot use the facilities fdva.sql to invoke other SQL operations that
also perform update actions.

» Triggers that are fired by SQL using the facilitiegasfa.sql cannot
generate result sets.

e java.sgl cannot be used to execute extended stored procedures or remote
stored procedures.

Transact-SQL Commands from Java Methods

You can use certain Transact-SQL commands in Java methods called within
the SQL system. Table 7-1 lists Transact-SQL commands and whether or not
you can use them in Java methods.

Table 7-1: Support status of Transact-SQL commands

Command Status

alter database Not supported.
alter role Not supported.
alter table Supported.
begin ... end Supported.
begin transaction Not supported.
break Supported.

161

Invoking SQL from Java

162

Command Status

case Supported.

checkpoint Not supported.

commit Not supported.

compute Not supported.

connect - disconnect Not supported.

continue Supported.

create database Not supported.

create default Not supported.

create existing table Not supported.

create index Not supported.

create procedure Not supported.

create role Not supported.

create rule Not supported.

create schema Not supported.

create table Supported.

create trigger Not supported.

create view Not supported.

cursors Not supported.
Only “server cursors” are
supported, that is, cursors
that are declared and used
within a stored procedure.

dbcc Not supported.

declare Supported.

disk init Not supported.

disk mirror Not supported.

disk refit Not supported.

disk reinit Not supported.

disk remirror Not supported.

disk unmirror Not supported.

drop database Not supported.

drop default Not supported.

drop index Not supported.

drop procedure Not supported.

drop role Not supported.

drop rule Not supported.

drop table Supported.

CHAPTER 7 Reference Topics

Command Status
drop trigger Not supported.
drop view Not supported.
dump database Not supported.
dump transaction Not supported.
execute Supported.
goto Supported.
grant Not supported.
group by and having Supported.
clauses
if...else Supported.
insert table Supported.
kill Not supported.
load database Not supported.
load transaction Not supported.
online database Not supported.
order by Clause Supported.
prepare transaction Not supported.
print Not supported.
raiserror Supported.
readtext Not supported.
return Supported.
revoke Not supported.
rollback trigger Not supported.
rollback Not supported.
save transaction Not supported.
set See Table 7-2 for set
options.
setuser Not supported.
shutdown Not supported.
truncate table Supported.
union Operator Supported.
update statistics Not supported.
update Supported.
use Not supported.
waitfor Supported.
where Clause Supported.
while Supported.

163

Invoking SQL from Java

164

Command

Status

writetext

Not supported.

Table 7-2 lists set command options and whether or not you can use themin

Java methods.
Table 7-2: Support status of set command options
set Command Option Status
ansinull Supported.
ansi_permissions Supported.
arithabort Supported.
arithignore Supported.
chained Not supported. See Note 1.
char_convert Not supported.
cis_rpc_handling Not supported
close on endtran Not supported
cursor rows Not supported
datefirst Supported
dateformat Supported
fipsflagger Not supported
flushmessage Not supported
forceplan Supported
identity_insert Supported
language Not supported
lock Supported
nocount Supported
noexec Not supported
offsets Not supported
or_strategy Supported
parallel_degree Supported. See Note 2.
parseonly Not supported
prefetch Supported
process_limit_action Supported. See Note 2.
procid Not supported
proxy Not supported
quoted_identifier Supported
replication Not supported
role Not supported
rowcount Supported

CHAPTER 7 Reference Topics

set Command Option

Status

scan_parallel_degree

Supported. See Note2.

self_recursion Supported
session_authorization Not supported
showplan Supported
sort_resources Not supported
statistics io Not supported
statistics subquerycache Not supported
statistics time Not supported
string_rtruncation Supported
table count Supported
textsize Not supported
transaction iso level Not supported. See Note 1.
transactional_rpc Not supported

Note (1) set commands with options chained or
transaction isolation level are allowed only if the setting
that they specify is already in effect. That is, this kind of
set commandisalowedif it hasno effect. Thisisdoneto
support common coding practisesin stored procedures.

Note (2) set commands pertaining to parallel degreeare
allowed but have no effect. This supportsthe use of stored
procedures that set the parallel degree for other contexts.

165

Datatype Mapping Between Java and SQL

Datatype Mapping Between Java and SQL

Adaptive Server maps SQL datatypes to Java types (SQL-Java datatype
mapping) and Java scalar types to SQL datatypes (Java-SQL datatype
mapping). Table 7-3 shows SQL -Java datatype mapping.

Table 7-3: Mapping SQL datatypes to Java types

SQL type Javatype

char String

varchar String

nchar String

nvarchar String

text String

numeric javamath.BigDecimal
decimal javamath.BigDecimal
money javamath.BigDecimal
smallmoney Java.math.BigDecimal
bit boolean

tinyint byte

smallint short

integer int

real float

float double

double precision double

binary byte[]

varbinary byte][]

image byte]]

datetime java.sgl. Timestamp

smalldatetime

javassgl. Timestamp

Table 7-4 shows Java-SQL datatype mapping.
Table 7-4: Mapping Java scalar types to SQL datatypes

Java Scalar type SQL type
boolean bit

byte tinyint
short smallint
int integer
long integer
float rea

166

CHAPTER 7 Reference Topics

Java Scalar type SQL type

double double

167

Java-SQL Identifiers

Java-SQL Identifiers

Java-SQL identifiers are Javaidentifiers that can be referenced in SQL. They
are asubset of Javaidentifiers.

Description

Syntax

Usage

See also

168

java_sql_identifier ::= alphabetic character | underscore (_) symbol

[alphabetic character | arabic numeral | underscore(_) symbol |

dollar ($) symbol]
Java-SQL identifiers can be a maximum of 255 bytes in length if they are
surrounded by quotation marks. Otherwise, they must be 30 bytes or less.

The first character of the identifier must be either an alphabetic character
(uppercase or lowercase) or the underscore () symbol. Subsequent
characters can include alphabetic characters (uppercase or lowercase),
numbers, the dollar ($) symbol, or the underscore (_) symbol.

Java-SQL identifiers are always case sensitive.

Delimited Identifiers

Delimited identifiers are object names enclosed in double quotes. Using
delimited identifiers for Java-SQL identifiers allows you to avoid certain
restrictions on the names of Java-SQL identifiers.

Note You can use double quotes with Java-SQL identifiers whether the
set quoted_identifier option ison or off.

Delimited identifiers allow you to use SQL reserved words for packages,
classes, methods, and so on. Each time you use the delimited identifier in
a statement, you must enclose it in double quotes. For example:

create table t1
(cl char(12)
c2 pl."select”.p2.”jar")

Double quotes surround only individual Java-SQL identifiers, not the fully
qualified name.

For additional information about identifiers, see Chapter 5, “Transact-SQL
Topics,” in theReference Manual.

CHAPTER 7 Reference Topics

Java-SQL Class and Package Names

Description

Syntax

Parameters

Usage

To reference a Java-SQL class or package, use the following syntax:

java_sql_class_name ::= [java_sql_package name.ljava_sql_identifier

java_sql_package _name ::=
[java_sql_package name.ljava_sql_identifier

java_sgl_class name
The fully qualified name of a Java-SQL class in the current database.
java_sgl_package name
The fully qualified name of a Java-SQL package in the current database.
For Java-SQL class nhames:
« A class name reference always refers to a class in the current database.

« If you specify a Java-SQL class name without referencing the package
name, only one Java-SQL class of that name must exist in the current
database, and its package must be the default (anonymous) package.

« If a SQL user-defined datatype and a Java-SQL class possess the same
sequence of identifiers, Adaptive Server uses the SQL user-defined
datatype name and ignores the Java-SQL class name

For Java-SQL package names:

« If you specify a Java-SQL subpackage name, you must reference the
subpackage name with its package name:

java_sql_package_name.java_sql_subpackage _name

e Use Java-SQL package names only as qualifiers for class names or
subpackage names and to delete packages from the database using the
remove java command.

169

Java-SQL Column Declarations

Java-SQL Column Declarations

Description To declare a Java-SQL column when you create or alter atable, use the
following syntax:

Syntax java_sql_column ::= column_name java_sql_class_name

Parameters java_sgl_column
Specifies the syntax of Java-SQL column declarations.

column_name
The name of the Java-SQL column.

java_sql_class name
The name of a Java-SQL class in the current database. This is the “declared
class” of the column.

Usage ¢ The declared class must implement eitherStagalizable or
Externalizable interface.

e AJava-SQL column is always associated with the current database.
¢ A Java-SQL column cannot be specified as:

e notnull

* unique

e Aprimary key

See also You use a Java-SQL column declaration only when you create or alter a table.
See thereate table andalter table information in theReference Manual.

170

CHAPTER 7 Reference Topics

Java-SQL Variable Declarations

Description

Syntax

Parameters

Usage

See also

Use Java-SQL variable declarations to declare variables and stored procedure
parameters for datatypes that are Java-SQL classes.

java_sql_variable ::= @variable_name java_sql _class_name
java_sql_parameter ::= @parameter_name java_sql_class_name

java_sgl_variable
Specifies the syntax of a Java-SQL variablein a SQL stored procedure.

java_sgl_parameter
Specifies the syntax of a Java-SQL parameter in a SQL stored procedure.

java_sgl_class _name
The name of a Java-SQL classin the current database.

A java_sql_variable or java_sgl_parameter is always associated with the
database containing the stored procedure.

Refer to the Reference Manual for more information about variable
declarations.

171

Java-SQL Column References

Java-SQL Column References

Description To reference afield or method of a class or class instance, use the following
syntax:
Syntax column_reference ::=

[[[database_name.]owner.ltable_name.]column_name
| database_name..table_name.column_name

Parameters column_reference
A reference to a column whose datatype is a Java-SQL class.
Usage e If the value of the column is null, then the column reference is also null.

« If the value of the column is a Java serialization, S, and the name of its
class isCS, then:

¢ [fthe clas<S does not exist in the current database 06ifs not the
name of a class in the database associated with the serialization, then
an exception is raised.

Note The database associated with the serialization is normally the
database that contains the column. Serializations contained in work
tables and in temporary tables created with “insert into #tempdb” are,
however, associated with the database in which the serialization was
stored originally.

* The value of the column reference is:
CSC.readObject(S)

where CSC is the column reference. If the expression raises an
uncaught Java exception, then an exception is raised.

The expression yields a reference to an object in the Java VM, which
is associated with the database associated with the serialization.

172

CHAPTER 7 Reference Topics

Java-SQL Member References

Description

Syntax

Parameters

Usage

References afield or method of a class or class instance.

member_reference ::= class_member_reference |
instance_member_reference

class_member_reference ::= java_sql_class_name.method_name
instance_member_reference ::= instance_expression>>member_name

instance_expression ::= column_reference | variable_name
| parameter_name | method_call | member_reference

member_name .= field_name | method_name
member_reference
An expression that describes afield or method of a class or object.

class_ member_reference
An expression that describes a static method of a Java-SQL class.

instance_member_reference
An expression that describes a static or dynamic method or field of a Java
SQL classinstance.

java_sgl_class name
A fully qualified name of a Java-SQL classin the current database.

instance_expression
An expression whose datatype is a Java-SQL class.

member_name
The name of afield or method of the class or class instance.

« If amember references a field of a class instance, the instance has a null
value, and the Java-SQL member reference is the targédtohaselect,
or update statement, then an exception is raised.

Otherwise, the Java-SQL member reference has the null value.

e The double angle (>>) and dot (.) qualification takes precedence over any
operator, such as the addition (+) or equal to (=) operator, for example:

X>>A1>>Bl + X>>A1>>B2

In this expression, the addition operation is performed after the members
have been referenced.

e The field or method designated by a member reference is associated with
the same database as that of its Java-SQL class or instance of its Java-SQL
class.

173

Java-SQL Member References

174

If the Javatype of amember referenceisone of the Java scalar types (such
as boolean, byte, and so on), then the corresponding SQL datatype of the
referenceis obtained by mapping the Javatypeto its equivalent SQL type.

If the Javatype of a member reference is an object type, then the SQL
datatype is the same Java object type or class.

CHAPTER 7 Reference Topics

Java-SQL Method Calls

Description To invoke a Java-SQL method, which returnsasingle value, use the following
syntax:
Syntax method_call ::= member_reference ([parameters])

| new java sql class name ([parameters])
parameters ::= parameter [(, parameter)...]
parameter ::= expression

Parameters method_call
An invocation of a class method, instance method, or class constructor. A
method call can be used in an expression where a non-constant value of the
method’s datatype is required.

member_reference
A member reference that denotes a method.

parameters
The list of parameters to be passed to the method. If there are no parameters,
include empty parentheses.

Usage Method Overloading

* When there are methods with the same name in the same class or instance,
the issue is resolved according to Java method overloading rules.

Datatype of Method Calls
e The datatype of a method call is determined as follows:

e If amethod call specifiesew, its datatype is that of its Java-SQL
class.

« If a method call specifies a member reference that denotes a type-
valued method, then the datatype of the method call is that type.

« If a method call specifies a member reference that denotes a void
static method, then the datatype of the method call is SQL integer.

« If a method call specifies a member reference that denotes a void
instance method of a class, then the datatype of the method call is that
of the class.

e If you want to include a parameter in a member reference when the
parameter is a Java-SQL instance associated with another database, you
must ensure that the class name associated with the Java-SQL instance is
included in both databases. Otherwise, an exception is raised.

Runtime Results

175

Java-SQL Method Calls

176

The runtime result of a method call is as follows:

If a method call specifies a member reference whose runtime value is
null (that is, a reference to a member of a null instance), then the result
is null.

If a method call specifies a member reference that denotes a type-
valued method, then the result is the value returned by the method.

If a method call specifies a member reference that denotes a void
static method, then the result is the null value.

If a method call specifies a member reference that denotes a void
instance method of an instance of a class, then the result is a reference
to that instance.

The method call and result of the method call are associated with the
same database.

Adaptive Server does not pass the null value as the value of a
parameter to a method whose Java type is scalar.

Glossary

assignment
associated JAR

bytecode
class

class file
class instance

datatype mapping

declared class

document type
declaration (DTD)

Extensible Markup
Language (XML)

Extensible Style
Language (XSL)

Thisglossary describes Java and Java-SQL terms used in this book. For a
description of Adaptive Server and SQL terms, refer to the Adaptive
Server Glossary.

A genericterm for thedatatransfers specified by select, fetch, insert, and
update T-SQL commands. An assignment setsasource valueinto atarget
dataitem.

If aclassjar isinstalled with installjava and the -jar option, thenthe JAR
isretained in the database and the class is linked in the database with the
associated jar. Seeretained JAR.

The compiled form of Java source code that is run by the Java VM.

A classisthe basic element of Java programs, containing a set of variable
declarations and methods. A classis the master copy that determines the
behavior and attributes of each instance of that class. See class instance.

A file of type “class” (for examplanyclass.class) that contains the
compiled bytecode for a Java class. $se file andJava archive (JAR).

An single copy of each of the fields of the class. Class instances are
strongly typed by the class name.

Conversions between Java and SQL datatypes.

The declared datatype of a Java-SQL data item. It is either the datatype of
the runtime value or a supertype of it.

In XML, every valid document has a DTD that describes the elements
available in that document type. A DTD can be embedded in the XML
document or referenced by it.

A metalanguage designed for Web applications that lets you define your
own markup tags and attributes for different kinds of documents. XML is
a subset of SGML.

A markup language designed to format XML documents into HTML or
other XML documents with different attributes and tags.

177

externalization

friendly

Hypertext Markup
Language (HTML)

installed classes

instance

interface
Java archive (JAR)

Java Database

Connectivity (JDBC)

Java Development

Kit (JDK)

Java file

Java object

Java-SQL column

Java-SQL class

178

An externalization of a Javainstance is a byte stream that contains sufficient
information for the class to reconstruct theinstance. Externalization is defined
by the externalizable interface. All Java-SQL classes must be either
externalizable or serializable. See serialization.

A friendly method can be called only by methods of other classesin the same
package.

A subset of SGML designed for the Web.

Installed Java classes and methods have been placed in the Adaptive Server
system by theinstalljava utility.

A particular copy of aclass. An object that is contained in the JavaVM. See
class instance.

A unique type of class that |ets a class inherit particular methods.
A platform-independent format for collecting classesin asinglefile.

A Java-SQL API that isastandard part of the Java Class Librariesthat control
Java application development. JDBC provides capabilities similar to those of
ODBC.

A toolset from Sun Microsystems that allows you to write and test Java
programs from the operating system.

A file of type “java” (for examplemyfilejava) that contains Java source code.
Seeclass file andJava archive (JAR).

An instance of a Java class that is contained in the storage of the Java VM. Java
instances that are referenced in SQL are either values of Java columns or Java
objects.

A SQL column whose datatype is a Java-SQL class.

A public Java class that has been installed in the Adaptive Server system. It
consists of a set of variable definitions and methods.

A class instance consists of an instance of each of the fields of the class. Class
instances are strongly typed by the class name.

A subclass is a class that is declared to extend (at most) to one other class. That
other class is called the direct superclass of the subclass. A subclass has all of
the variables and methods of its direct and indirect superclasses, and may be
used interchangeably with them.

Glossary

Java-SQL datatype
mapping

Java-SQL variable

Java Virtual Machine
(Java VM)

mappable

method

narrowing
conversion

package

procedure
public

retained JAR

Conversions between Java and SQL datatypes. See “Datatype Mapping
Between Java and SQL” on page 166.

A SQL variable whose datatype is a Java-SQL class.

The Java interpreter that processes Java in the server. It is invoked by the SQL
implementation.

A Java datatype is mappable if it is either;

« Listed in the first column of Table 7-3 on page 166, or

e A public Java-SQL class that is installed in the Adaptive Server system.
A SQL datatype is mappable if it is either:

e Listed in the first column of Table 7-4 on page 166, or

e Apublic Java-SQL class that is built-in or installed in the Adaptive Server
system.

A Java method is mappable if all of its parameter and result datatypes are
mappable.

A set of instructions, contained in a Java class, for performing a task. A method
can be declared static, in which case it is called a class method. Otherwise, itis
an instance method. Class methods can be referenced by qualifying the method
name with either the class name or the name of an instance of the class.
Instance methods are referenced by qualifying the method name with the name
of an instance of the class. The method body of an instance method can
reference the variables local to that instance

A Java operation for converting a reference to a class instance to a reference to
an instance of a subclass of that class. This operation is written in SQL with the
convert function. See alswidening conversion.

A package is a set of related classes. A class either specifies a package or is part
of an anonymous default package. A class can useérdawat statements to
specify other packages whose classes can then be referenced.

An SQL stored procedure, or a Java method withicresult type.
Public fields and methods, as defined in Java.

A JAR that is installed by thestalljava utility with the-jar option. A retained
JAR is associated in the database with the classes it contains.

179

serialization

SQL92
SQL3

SQL-Java datatype
mapping

subclass

superclass

synonymous
classes

Unicode

valid document

variable

visible

well-formed
document

widening conversion

180

A seridization of a Javainstance is a byte stream containing sufficient
information to identify its class and reconstruct the instance. All Java-SQL
classes must be either externalizable or serializable. See externalization.

The current SQL standard.
The working draft for the next revision of the SQL standard.

See datatype mapping.

A class below another classin ahierarchy. It inherits attributes and behavior
from classes above it. A subclass may be used interchangeably with its
superclasses. The class above the subclassis its direct superclass. See
superclass, narrowing conversion, and widening conversion.

A class above one or more classes in a hierarchy. It passes attributes and
behavior to the classes below it. It may not be used interchangeably with its
subclasses. Seesubclass, narrowing conversion, and widening conversion.

Java-SQL classes that have the same fully qualified name but areinstalled in
different databases.

A 16-bit character set defined by 1SO 10646 that supports many languages.

In XML, avaid document hasaDTD and adherestoit. It isalso awell-formed
document.

In Java, avariableislocal to aclass, to instances of the class, or to a method.
A variablethat is declared static islocal to the class. Other variables declared
inthe class arelocal to instances of the class. Those variables are called fields
of theclass. A variable declared in amethod islocal to the method.

A Javaclassthat has been installed in a SQL system isvisiblein SQL if it is
declared public; afield or method of a Javainstanceisvisiblein SQL if it is
both public and mappable. Visible classes, fields, and methods can be
referencedin SQL. Other classes, fields, and methods cannot, including classes
that are private, protected, or friendly, and fields and methods that are either
private, protected, or friendly, or are not mappable.

In XML, the necessary characteristics of awell-formed document include: all
elements with both start and end tags, attribute values in quotes, all elements
properly nested.

A Javaoperation for converting areferenceto aclassinstance to areferenceto
an instance of asuperclass of that class. This operation iswrittenin SQL with
the convert function. See also narrowing conversion.

Index

Symbols

, (comma)
in SQL statements xiv
{} (curly braces)
in SQL statements xiv
() (parentheses)
in SQL statements xiv
[] (square brackets)
in SQL statements xiv
>> (double angle)
to qualify Javafields and methods 33, 173

A

Additional information
about Java 9
about XML 84
dter table command
syntax 29
ANS| standards 4
Assignment properties
Java-SQL dataitems 37
Assignments 154
AttachingtoaJavaVM 141

B

Bresking
onaclassmethod 144
onalinenumber 144
using conditions 144
using counts 144
when execution isnot interrupted 145
Breskpoints 143

C

caseexpressions 43
Character sets 41

XML 87,91
Classnames 169
Classsubtypes 42-44
Classes. See Java classes 8

Clients
bcp 157
bcp 157
isql 157

Client-side JDBC 6
Column datatypes
requirements 28
Column declarations 170
Column references 172
Comma (,)

in SQL statements xiv
Compile-time datatypes 43
Compiling Java code 17
Constructor method 31
Constructors 31, 49
Conventions

Java-SQL syntax Xii
Transact-SQL syntax xiii
Conversions 156
narrowing 42
widening 42
convert function 42, 156
create table command
syntax 29

Creating tables 29
Curly braces ({})

in SQL statements xiv

D

Datatype conversions 156
Datatype mapping 40, 166-167
Datatypes

compile-time 43

Java classes 3

runtime 43

Debug.jar 140

Debugger 138
attachingtoa Java VM 141
compiling classes for 140
disconnecting 146
how it works 138

options 142
requirements for using 138
starting 140

181

Index

wait mode 141
Debugger capabilities
browseclasses 139

inspect and break on expressions 139

inspect and set variables 139
set break conditions 138

set breakpoints 138

trace execution 138
Debugger location 140
Debugger windows

breskpoints 141

cals 141

classes 142

connection 142

exceptions 142

inspection 142

locals 142

source 141

Debugging Java 137-151
Debugging tutorial 147-151
attaching to a Java VM 148
inspecting local variables 150
inspecting static variables 151
inspecting variables 149
loading source code 148
modifying local variables 151
source code 147

starting the debugger 147

stepping through source code 149

Deleting Java objects 31
Delimited identifiers 168
Disabling Java 16
distinct keyword 52

Document storage 92, 105-110, 123-130

Document Type Definition. See DTD
Double angle >>

to qualify Java fields and methods
Downloading installed classes 23
Downloading installed JARs 23
DTD 88

elements of 89

internal 90

182

E

Element storage 92, 102-105, 120-123

Enabling Java 16
Equality operations 52
Exceptions 35

Extensible Markup Language. See XML

Extensible Style Language. See XSL
Externalization 170
extractjava utility 23

G

group by clause 52

H

Hybrid storage 93, 110-111, 130

Identifiers 168

delimited 168

Inserting Java objects 31
Installing Java classes 19-21
installjava utility 19
-foption 19

-joption 19

new option 20

syntax 19

update option 20
installjava utility 14
Instance methods 49
Inter-class arguments 58
Invoking Java methods 34
Invoking SQL from Java 161-165

J

JAR files
creating 18
installing 17

Index

retaining 19

JavaAPl 7

accessing fromSQL 7
supported packages 158-160
Sybase support for 8
unsupported packages 159
Java classes

as datatypes 3, 28
creating 17-18
installing 19-21
referencing other classes 21
retained 24

runtime 14

saving in JAR 17
supported 8

updating 20
user-defined 8, 14

Java code

compiling 17

writing 17

Java constructors 31

Java Development Kit 6
Java fields

referencing 33

Java in the database
advantages of 2
capabilities 3

key features 5
preparing for 13-24
questions and answers 5-10
Java instances

representing 36

Java methods

exceptions 35

invoking 34

Java runtime environment 14
JavaVM 6, 14
java.sgl 161
java.sgl methods

unsupported 159
javac compiler 140

Java-SQL
creating tables 29
names 26

Java-SQL class names 169
Java-SQL classes

in multiple databases 55
installing 19-21

Java-SQL column declarations 170
Java-SQL column references 172
Java-SQL columns 37,53
storage options 29

Java-SQL function results 37
Java-SQL identifiers 168
Java-SQL member references 173
Java-SQL method calls 175
Java-SQL objects

transferring to clients 156, 157
Java-SQL package names 169
Java-SQL parameters 37, 54
Java-SQL variable declarations 171
Java-SQL variables 37,54

static 55
jConnect for JIDBC 6

JDBC 65-82

accessing data 70

client-side 6, 68

concepts 67

connection defaults 69
DriverManager.getConnection() method
JDBCExamples class 70
obtaining a connection 72
permissions 69

server-side 6, 68

terminology 67

JDBC connections 72

JDBC drivers 15, 161

client-side 6, 68

jConnect 6

server-side 6, 68

JDBC interface 8

JDBC version support 15
JDBCExamples class 77-82
methods 71-76

overview 70

M

Mapping datatypes 166-167
Member references 173
Method calls 175

68

183

Index

datatypeof 175
Method overloading 175
Methods

call by reference 53

exceptions 35
instance 49
invoking 34

runtimeresults 175
static 51
type 48,49
void 49
Multiple databases 56

N

NamesinJavaaSQL 26
case 27
length 26

Narrowing conversions 42

Nullsin Java-SQL 45-47
arguments to methods
references to fields 45
references to methods
using convert functions

O

Obtaining connections 72
order by clauses 52

Ordering operations 52
OrderXml class 97-100

P

Package names 169
Parentheses ()

in SQL statements xiv
Parsers for XML 95
Permissions

Java 6, 26

JDBC 69

Persistent data items 37

184

Q

Questions and answers 5

R

Rearranging installed classes

Referencing

fields 33,172
methods 172
Related documents ix

24

remove java command 24, 169

Removing classes 24
Removing JARs 24

Restrictions on Java in the database

ResultSet class 116-119

Runtime datatypes 43

Runtime environment 14

Runtime Java classes 14
location of 14

S

Sample classes 60-64
Address 60
Address2Line 61
JDBCExamples 70-82
JXml 94
location of 11
Misc 62
OrderXml 94, 97
ResultSet 112
ResultSetXml 94

Selecting Java objects 31

Serialization 170, 172

Server-side JDBC 6

set commands
allowed in Java methods
updating 50

164

sp_configure system procedure

sp_helpjava utility
syntax 22
SQL 33
Square brackets]
in SQL statements xiv

16

Index

Standards specifications 4
Static methods 51
Static variables 55
Storage options
inrow 29
String data 48
zerolength 48
String values
using 36
Subtypes 42
Supertypes 42
Symbols
in SQL statements xiv
Syntax conventions
Java-SQL xii
Transact-SQL xiii

T

Temporary databases 58
toString() method 36
Transact-SQL commands

dlowed in Javamethods 161
Transient dataitems 37

U

Unicode 48

union operator 52

Updating Java objects 31

User-defined classes
creating 17

User-defined functions 3

Using Javaclasses 25-59

Vv

Variable declarations 171
Variables 171
datatypes of 28
static 55

values assignedto 31
Viewing information

about installed classes 22
about installed JARs 22

W

where clauses 42, 45, 50, 53
Widening conversions 42
Work databases 58

X

XML 83-135

accessing 94

additional information 84
comparison with HTML 84
customizable example 112
overview 86

sample document 86
source code for sample classes
XML data

document storage 92
element storage 92
XML data operations
server-side 93

XML documents

character sets 91

DTDs 88

formatting for 90

invalid characters 130
parts of 87

valid 90

well-formed 88

XML operations

client-side 93

XML parsers 95

standard interfaces 95
XML storage options

pros and cons 93

XSL 90

Z

Zero-length strings 48

84

185

Index

186

