
Java in Adaptive Server® Enterprise

Adaptive Server® Enterprise
Version 12

Document ID: 31652-01-1200-01

Last revised: October 1999

Copyright © 1989-1999 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase database management software and to any subsequent release until otherwise indicated in new
editions or technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication,
Adaptive Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, AnswerBase, Anywhere Studio, Application Manager,
AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Translator, APT-Library, Backup Server,
ClearConnect, Client-Library, Client Services, Data Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress,
DataServer, DataWindow, DB-Library, dbQueue, Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution
Director, E-Anywhere, E-Whatever, Embedded SQL, EMS, Enterprise Application Server, Enterprise Application Studio, Enterprise
Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work
Architecture, Enterprise Work Designer, Enterprise Work Modeler, EWA, Gateway Manager, ImpactNow, InfoMaker, Information
Anywhere, Information Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase,
MainframeConnect, Maintenance Express, MAP, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, MySupport,
Net-Gateway, Net-Library, NetImpact, ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit,
Open Client, Open ClientConnect, Open Client/Server, Open Client/Server Interfaces, Open Gateway, Open Server, Open
ServerConnect, Open Solutions, Optima++, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, Power++, power.stop, PowerAMC,
PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerJ, PowerScript,
PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare
Desktop, PowerWare Enterprise, ProcessAnalyst, Report Workbench, Report-Execute, Replication Agent, Replication Driver,
Replication Server, Replication Server Manager, Replication Toolkit, Resource Manager, RW-DisplayLib, RW-Library, S Designor, S-
Designor, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script, SQL
Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL
Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL
Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, Sybase Central, Sybase Client/Server Interfaces, Sybase Financial
Server, Sybase Gateways, Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench,
SybaseWare, Syber Financial, SyberAssist, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream,
Transact-SQL, Translation Toolkit, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visual
Components, VisualSpeller, VisualWriter, VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse
WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup
SQL Server, XA-Library, XA-Server and XP Server are trademarks of Sybase, Inc. 9/99

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-
7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., 6475 Christie Avenue, Emeryville, CA 94608.

Contents

iii

About This Book ... ix

CHAPTER 1 An Introduction to Java in the Database 1
Advantages of Java in the Database ... 2
Capabilities of Java in the Database.. 3

Java User-Defined Functions .. 3
Java Classes as Datatypes ... 3

Standards... 4
Java in the Database: Questions and Answers................................ 5

What Are the Key Features? ... 5
How Can I Store Java Instructions in the Database?................ 5
How Is Java Executed in the Database?................................... 6
How Can I Use Java and SQL Together? 7
What Is the Java API?... 7
How Can I Access the Java API from SQL? 7
Which Java Classes Are Supported in the Java API?............... 8
Can I Install My Own Java Classes?... 8
Can I Access Data Using Java?.. 8
Can I Move Classes from Client to Server? 8
How Do I Use Java Classes in SQL?.. 9
Can I Find More Information About Java in the Database? 9
What You Cannot Do with Java in the Database 9

Sample Java Classes... 11

CHAPTER 2 Preparing for and Maintaining Java in the Database................. 13
The Java Runtime Environment ... 14

Java Classes in the Database... 14
JDBC Drivers... 15

Enabling the Server for Java.. 16
Disabling the Server for Java .. 16

Creating Java Classes and JARs... 17
Writing the Java Code ... 17
Compiling Java Code .. 17

Contents

iv

Saving Classes in a JAR File .. 17
Installing Java Classes in the Database .. 19

Using installjava .. 19
Referencing Other Java-SQL Classes 21

Viewing Information about Installed Classes and JARs................. 22
Downloading Installed Classes and JARs...................................... 23
Removing Classes and JARs... 24

Retaining Classes ... 24

CHAPTER 3 Using Java Classes in SQL... 25
General Considerations ... 26

Java-SQL Names .. 26
Using Java Classes as Datatypes.. 28
Creating Tables with Java-SQL Columns 29
Selecting, Inserting, Updating, and Deleting Java Objects 31
Referencing Java Fields in SQL... 33
Invoking Java Methods in SQL .. 34

Sample Methods ... 34
Exceptions in Java-SQL Methods ... 35

Representing Java Instances... 36
Assignment Properties of Java-SQL Data Items............................ 37
Datatype Mapping Between Java and SQL Fields......................... 40
Character Sets for Data and Identifiers.. 41
Subtypes in Java-SQL Data... 42

Widening Conversions .. 42
Narrowing Conversions ... 42
Runtime vs. Compile-Time Datatypes..................................... 43

The Treatment of Nulls in Java-SQL Data 45
References to Fields and Methods of Null Instances 45
Null Values as Arguments to Java-SQL Methods 46
Null Values When Using the SQL convert Function................ 47

Java-SQL String Data .. 48
Zero-Length Strings... 48

Type and Void Methods ... 49
Java Void Instance Methods ... 49
Java Void Static Methods.. 51

Equality and Ordering Operations.. 52
Call-by-Reference for Java Methods.. 53

Columns .. 53
Variables and Parameters... 54

Static Variables in Java-SQL Classes.. 55
Java Classes in Multiple Databases .. 56

Scope .. 56
Cross-Database References ... 56

Contents

v

Inter-Class Transfers... 57
Passing Inter-Class Arguments... 58
Temporary and Work Databases .. 58

Sample Java Classes... 60

CHAPTER 4 Data Access Using JDBC... 65
Overview .. 66
JDBC Concepts and Terminology.. 67
Differences Between Client- and Server-Side JDBC 68
Connections and Permissions.. 69
Using JDBC to Access Data .. 70

Overview of the JDBCExamples Class 70
The main() and serverMain() Methods 71
Obtaining a JDBC Connection: the Connecter() Method 72
Routing the Action to Other Methods: the doAction() Method 73
Executing Imperative SQL Operations: the doSQL() Method 73
Executing an update Statement: the UpdateAction() Method 73
Executing a select Statement: the selectAction() Method 74
Calling a SQL Stored Procedure: the callAction() Method 75

The JDBCExamples Class... 77
The main() Method ... 77
The internalMain() Method ... 77
The connecter() Method ... 78
The doAction() Method... 79
The doSQL() Method.. 80
The updateAction() Method.. 80
The selectAction() Method ... 81
The callAction() Method ... 81

CHAPTER 5 XML in the Database... 83
Introduction .. 84

Source Code and Javadoc .. 84
References .. 84
An Overview of XML.. 86

Using XML in the Adaptive Server Database................................. 92
Mapping and Storage .. 92
Client or Server Considerations .. 93
Accessing XML in SQL.. 94
XML Parsers.. 95

A Simple Example for a Specific Result Set 97
The OrderXml Class for Order Documents 97
Creating and Populating SQL Tables for Order Data............ 100
Using the Element Storage Technique.................................. 102

Contents

vi

Using the Document Storage Technique 105
Using the Hybrid Storage Technique 110

A Customizable Example for Different Result Sets...................... 112
The ResultSet Document Type ... 112
The ResultSetXml Class for Result Set Documents 116
Using the Element Storage Technique.................................. 120
Using the Document Storage Technique 123
Using the Hybrid Storage Technique 130
XML ResultSet Documents: Invalid XML Characters............ 130

CHAPTER 6 Debugging Java in the Database ... 137
Introduction to Debugging Java ... 138

How the Debugger Works ... 138
Requirements for Using the Java Debugger 138
What You Can Do with the Debugger 138

Using the Debugger ... 140
Starting the Debugger and Connecting to the Database....... 140
Compiling Classes for Debugging ... 140
Attaching to a Java VM ... 141
The Source Window .. 141
Options .. 142
Setting Breakpoints ... 143
Disconnecting from the Database ... 146

A Debugging Tutorial ... 147
Before You Begin .. 147
Start the Java Debugger and Connect to the Database........ 147
Attach to a Java VM .. 148
Load Source Code into the Debugger................................... 148
Step Through Source Code... 149
Inspecting and Modifying Variables....................................... 150

CHAPTER 7 Reference Topics... 153
Assignments... 154

Assignment Rules at Compile-Time...................................... 154
Assignment Rules at Runtime ... 154

Allowed Conversions.. 156
Transferring Java-SQL Objects to Clients.................................... 157
Supported Java API Packages, Classes, and Methods............... 158

Supported Java Packages and Classes................................ 158
Unsupported Java Packages .. 159
Unsupported java.sql Methods.. 159

Invoking SQL from Java... 161
Special Considerations.. 161

Contents

vii

Transact-SQL Commands from Java Methods 161
Datatype Mapping Between Java and SQL 166

Java-SQL Identifiers... 168
Java-SQL Class and Package Names... 169
Java-SQL Column Declarations... 170
Java-SQL Variable Declarations .. 171
Java-SQL Column References .. 172
Java-SQL Member References.. 173
Java-SQL Method Calls ... 175

Glossary ... 177

INDEX

viii

ix

About This Book

This book describes how to install and use Java classes and methods in the
Sybase® Adaptive Server® Enterprise database.

Audience This book is for Sybase System Administrators, Database Owners, and
users who are familiar with the Java programming language and Transact-
SQL®, the Sybase version of Structured Query Language (SQL).

How to use this book This book will assist you in installing, configuring, and using Java classes
and methods in the Adaptive Server database. It includes these chapters:

• Chapter 1, “An Introduction to Java in the Database” provides an
overview of Java in Adaptive Server, including a Questions and
Answers section for both novice and experienced Java users.

• Chapter 2, “Preparing for and Maintaining Java in the Database”
describes the Java runtime environment and the steps for enabling
Java on the server and installing Java classes.

• Chapter 3, “Using Java Classes in SQL” describes how to use Java-
SQL in your Adaptive Server database.

• Chapter 4, “Data Access Using JDBC” describes how you use a
JDBC driver (on the server or on the client) to perform SQL
operations in Java.

• Chapter 5, “XML in the Database” describes how you can use Java to
access Extensible Markup Language (XML) documents from an
Adaptive Server database.

• Chapter 6, “Debugging Java in the Database” describes how you use
the Sybase debugger with Java.

• Chapter 7, “Reference Topics” provides information about datatype
mapping, Java-SQL syntax, and other useful information.

In addition, a glossary provides descriptions of Java and Java-SQL terms
used in this book.

Related documents The following documents comprise the Sybase Adaptive Server
Enterprise documentation:

x

• The Release Bulletin for your platform – contains last-minute information
that was too late to be included in the books.

A more recent version of the Release Bulletin may be available on the
World Wide Web. To check for critical product or document information
that was added after the release of the product CD, use SyBooks™-on-the-
Web.

• The Adaptive Server installation documentation for your platform –
describes installation and upgrade procedures for all Adaptive Server and
related Sybase products.

• What’s New in Adaptive Server Enterprise? – describes the new features
in Adaptive Server release 12.0, the system changes added to support
those features, and the changes that may affect your existing applications.

• Transact-SQL User’s Guide – documents Transact-SQL“, Sybase’s
enhanced version of the relational database language. This manual serves
as a textbook for beginning users of the database management system.
This manual also contains descriptions of the pubs2 and pubs3 sample
databases.

• System Administration Guide – provides in-depth information about
administering servers and databases. This manual includes instructions
and guidelines for managing physical resources, security, user and system
databases, and specifying character conversion, international language,
and sort order settings.

• Adaptive Server Reference Manual – contains detailed information about
all Transact-SQL commands, functions, procedures, and datatypes. This
manual also contains a list of the Transact-SQL reserved words and
definitions of system tables.

• Performance and Tuning Guide – explains how to tune Adaptive Server
for maximum performance. This manual includes information about
database design issues that affect performance, query optimization, how to
tune Adaptive Server for very large databases, disk and cache issues, and
the effects of locking and cursors on performance.

• The Utility Programs manual for your platform – documents the Adaptive
Server utility programs, such as isql and bcp, which are executed at the
operating system level.

• Error Messages and Troubleshooting Guide – explains how to resolve
frequently occurring error messages and describes solutions to system
problems frequently encountered by users.

 About This Book

xi

• Component Integration Services User’s Guide for Adaptive Server
Enterprise and OmniConnect – explains how to use the Adaptive Server
Component Integration Services feature to connect remote Sybase and
non-Sybase databases.

• Using Sybase Failover in a High Availability System – provides
instructions for using Sybase’s Failover to configuring an Adaptive Server
as a companion server in a high availability system.

• Using Adaptive Server Distributed Transaction Management Features –
explains how to configure, use, and troubleshoot Adaptive Server DTM
Features in distributed transaction processing environments.

• Adaptive Server Glossary – defines technical terms used in the Adaptive
Server documentation.

Other sources of
information

Use the Sybase Technical Library CD and the Technical Library Product
Manuals web site to learn more about your product:

• Technical Library CD contains product manuals and technical documents
and is included with your software. The DynaText browser (included on
the Technical Library CD) allows you to access technical information
about your product in an easy-to-use format.

Refer to the Technical Library Installation Guide in your documentation
package for instructions on installing and starting Technical Library.

• Technical Library Product Manuals web site is an HTML version of the
Technical Library CD that you can access using a standard web browser.
In addition to product manuals, you’ll find links to the Technical
Documents web site (formerly known as Tech Info Library), the Solved
Cases page, and Sybase/Powersoft newsgroups.

To access the Technical Library Product Manuals web site, go to Product
Manuals at http://sybooks.sybase.com.

Sybase certifications
on the web

Technical documentation at the Sybase web site is updated frequently.

❖ For the latest information on product certifications and/or the EBF
Rollups:

1 Point your web browser to Technical Documents at
http://techinfo.sybase.com.

2 In the Browse section, click on What’s Hot.

3 Select links to Certification Reports and EBF Rollups, as well as links to
Technical Newsletters, online manuals, and so on.

xii

❖ If you are a registered SupportPlus user:

1 Point your web browser to Technical Documents at
http://techinfo.sybase.com.

2 In the Browse section, click on What’s Hot.

3 Click on EBF Rollups.

You can research EBFs using Technical Documents, and you can
download EBFs using Electronic Software Distribution (ESD).

4 Follow the instructions associated with the SupportPlusSM Online
Services entries.

❖ If you are not a registered SupportPlus user, and you want to become
one:

You can register by following the instructions on the Web.

To use SupportPlus, you need:

1 A Web browser that supports the Secure Sockets Layer (SSL), such as
Netscape Navigator 1.2 or later

2 An active support license

3 A named technical support contact

4 Your user ID and password

❖ Whether or not you are a registered SupportPlus user:

You may use Sybase’s Technical Documents. Certification Reports are among
the features documented at this site.

1 Point your web browser to Technical Documents at
http://techinfo.sybase.com

2 In the Browse section, click on What’s Hot.

3 Click on the topic that interests you.

Java syntax
conventions

This book uses these font and syntax conventions for Java items:

• Classes, interfaces, methods, and packages are shown in bold Helvetica
within paragraph text. For example:

SybConnection class

SybEventHandler interface

setBinaryStream() method

 About This Book

xiii

com.Sybase.jdbx package

• Objects, instances, and parameter names are shown in italics. For
example:

“In the following example, ctx is a DirContext object.”

 “eventHdler is an instance of the SybEventHandler class that you
implement.”

“The classes parameter is a string that lists specific classes you want to
debug.”

• Java names are always case sensitive. For example, if a Java method name
is shown as Misc.stripLeadingBlanks(), you must type the method name
exactly as displayed.

Transact-SQL syntax
conventions

This book uses the same font and syntax conventions for Transact-SQL as
other Adaptive Server documents:

• Command names, command option names, utility names, utility flags, and
other keywords are in bold Helvetica in paragraph text. For example:

select command

isql utility

-f flag

• Variables, or words that stand for values that you fill in, are in italics. For example:

user_name

server_name

• Code fragments are shown in a monospace font.Variables in code
fragments (that is, words that stand for values that you fill in) are italicized.
For example:

Connection con = DriverManager.getConnection
("jdbc:sybase:Tds:host:port", props);

• You can disregard case when typing Transact-SQL keywords. For
example, SELECT, Select, and select are the same.

Additional conventions for syntax statements in this manual are described in
Table 1. Examples illustrating each convention can be found in the System
Administration Guide.

xiv

Table 1: Syntax statement conventions

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

Key Definition
{ } Curly braces indicate that you choose at least one of the enclosed

options. Do not include braces in your option.

[] Brackets mean choosing one or more of the enclosed options is
optional. Do not include brackets in your option.

() Parentheses are to be typed as part of the command.

| The vertical bar means you may select only one of the options
shown.

, The comma means you may choose as many of the options shown
as you like, separating your choices with commas to be typed as
part of the command.

1

C H A P T E R 1 An Introduction to Java in the
Database

This chapter provides an overview of Java classes in Adaptive Server
Enterprise.

These topics are discussed:

Name Page

Advantages of Java in the Database 2

Capabilities of Java in the Database 3

Standards 4

Java in the Database: Questions and Answers 5

Sample Java Classes 11

Advantages of Java in the Database

2

Advantages of Java in the Database
Adaptive Server provides a runtime environment for Java, which means that
Java code can be executed in the server. Building a runtime environment for
Java in the database server provides powerful new ways of managing and
storing both data and logic.

• You can use the Java programming language as an integral part of
Transact-SQL.

• You can reuse Java code in the different layers of your application—client,
middle-tier, or server—and use them wherever makes most sense to you.

• Java in Adaptive Server provides a more powerful language than stored
procedures for building logic into the database.

• Java classes become rich, user-defined data types.

• Methods of Java classes provide new functions accessible from SQL.

• Java can be used in the database without jeopardizing the integrity,
security, and robustness of the database. Using Java does not alter the
behavior of existing SQL statements or other aspects of non-Java
relational database behavior.

CHAPTER 1 An Introduction to Java in the Database

3

Capabilities of Java in the Database
Java in Adaptive Server provides these functionalities:

• Java user-defined functions (UDFs)

• Java classes as datatypes in SQL

Java User-Defined Functions
You can install Java classes in the Adaptive Server database, and then invoke
the methods of those classes, both from within the SQL system and from client
systems.

The methods of an object-oriented language correspond to the functions of a
procedural language. You can invoke Java methods as UDFs in, for example,
select lists and where clauses. You can use methods from other sources or
methods you create and test.

Java Classes as Datatypes
With Java in the database, you can install pure Java classes in a SQL system,
and then use those classes in a natural manner as datatypes in SQL. This
capability adds a full object-oriented datatype extension mechanism to SQL,
using a model that is widely understood and a language that is portable and
widely available. The objects that you create and store with this facility are
readily transferable to any Java-enabled environment, either in another SQL
system or stand-alone Java environment.

This capability of using Java classes in the database has two different but
complementary uses:

• It provides a type extension mechanism for SQL, which you can use for
data that is created and processed in SQL.

• It provides a persistent data capability for Java, which you can use to store
data in SQL that is created and processed (mainly) in Java. Java in
Adaptive Server provides a distinct advantage over traditional SQL
facilities: You do not need to map the Java objects into scalar SQL data
types or store the Java objects as untyped binary strings.

Standards

4

Standards
The SQLJ consortium of SQL vendors is developing specifications for using
Java with SQL. The consortium submits these specifications to ANSI for
formal processing as standards.

The SQLJ specifications are divided into three parts:

• Part 0 – specifications for embedding SQL statements in Java methods,
similar to the traditional SQL facilities for embedded SQL in COBOL and
C and other languages. The Java classes containing embedded SQL
statements are precompiled to pure Java classes with JDBC calls.

• Part 1 – specifications for installing Java classes in a SQL system, and for
invoking Java static methods as SQL stored procedures and functions.

• Part 2 – specifications for using Java classes as SQL datatypes.

You can use methods and classes using the Part 0 specifications with Java in
Adaptive Server.

Java in Adaptive Server provided the basis for Parts 1 and 2. However, Java in
Adaptive Server allows you to use Java names directly in SQL, whereas SQLJ
Parts 1 and 2 currently require that you use the SQL create statement to define
SQL aliases for Java method and class names. Java in Adaptive Server will
support the SQLJ Parts 1 and 2 specifications when they are finalized.

CHAPTER 1 An Introduction to Java in the Database

5

Java in the Database: Questions and Answers
Although this book assumes that readers are familiar with Java, there is much
to learn about Java in a database. Sybase is not only extending the capabilities
of the database with Java, but also extending the capabilities of Java with the
database.

Both experienced and novice Java users should read this section. It uses a
question-and-answer format to familiarize you with the basics of Java in
Adaptive Server.

What Are the Key Features?
All of these points are explained in detail in later sections. With Java in
Adaptive Server, you can:

• Run Java in the database server using an internal Java Virtual Machine
(Java VM).

• Call Java functions (methods) from SQL statements.

• Access data from Java using an internal JDBC driver.

• Use Java classes as datatypes.

• Save instances of Java objects in tables.

• Generate XML-formatted documents from data stored in Adaptive Server
databases and, conversely, store XML documents and data extracted from
them in Adaptive Server databases.

• Debug Java in the database.

• Preserve the behavior of existing SQL statements and other aspects of
non-Java relational database behavior.

How Can I Store Java Instructions in the Database?
Java is an object-oriented language, so its instructions (source code) come in
the form of classes. You write and compile the Java instructions outside the
database into compiled classes (byte code), which are binary files holding Java
instructions.

You then install the compiled classes into the database, where they can be
executed in the database server.

Java in the Database: Questions and Answers

6

Adaptive Server is a runtime environment for Java classes. You need a Java
development environment, such as Sybase PowerJ™ or Sun Microsystems
Java Development Kit (JDK), to write and compile Java.

How Is Java Executed in the Database?
To support Java in the database, Adaptive Server:

• Comes with its own Java VM, specifically developed for handling Java
processing in the server.

• Uses its own JDBC driver that runs in the server and accesses a database.

The Sybase Java VM runs in the database environment. It interprets compiled
Java instructions and runs them in the database server.

The Sybase Java VM meets the JCM specifications from JavaSoft; it is
designed to work with the 1.1.6 version of the Java API. It supports public class
and instance methods; classes inheriting from other classes; the Java API; and
access to protected, public, and private fields. Some Java API functions not
appropriate in a server environment, such as user interface elements, are not
supported. All supported Java API packages and classes come with Adaptive
Server.

The Adaptive Server Java VM is available at all times to perform a Java
operation whenever it is required as part of the execution of a SQL statement.
The database server starts the Java VM automatically when it is needed; you
do not need to take any explicit action to start or stop the Java VM.

Client- and Server-Side JDBC

JDBC is the industry standard API for executing SQL in Java.

Adaptive Server provides its own server-side JDBC driver. This driver is
designed to maximize performance as it executes on the server because it does
not need to communicate across the network. This internal driver permits Java
classes installed in a database to use JDBC classes that execute SQL
statements.

When JDBC classes are used within a client application, you typically must use
jConnect® for JDBC™, the Sybase client-side JDBC database driver, to
provide the classes necessary to establish a database connection.

CHAPTER 1 An Introduction to Java in the Database

7

How Can I Use Java and SQL Together?
A guiding principle for the design of Java in the database is that it provides a
natural, open extension to existing SQL functionality.

• Java operations are invoked from SQL– Sybase has extended the range of
SQL expressions to include fields and methods of Java objects, so that
Java operations can be included in a SQL statement.

• Java classes become user-defined datatypes – You store Java classes using
the same SQL statements as those used for traditional SQL datatypes.

You can use classes that are part of the Java API and classes created and
compiled by Java developers. The Java API classes are created and compiled
by Sun Microsystems and by Sybase.

What Is the Java API?
The Java Application Programmer’s Interface (API) is a set of classes defined
by Sun Microsystems. It provides a range of base functionality that can be used
and extended by Java developers. It is the core of “what you can do” with Java.

The Java API offers considerable functionality in its own right. A large portion
of the Java API is built in to any database that is enabled to use Java code—
which includes the majority of non-visual classes from the Java API already
familiar to developers using the Sun Microsystems JDK.

You can use the Java API in classes, in stored procedures, and in SQL
statements. You can treat the Java API classes as extensions to the available
built-in functions provided by SQL.

How Can I Access the Java API from SQL?
You can use the Java API in classes, in stored procedures, and in SQL
statements. You can create the Java API classes as extensions to the available
built-in functions provided by SQL.

For example, the SQL function PI(*) returns the value for Pi. The Java API
class java.lang.Math has a parallel field named PI that returns the same value.
But java.lang.Math also has a field named E that returns the base of the natural
logarithm, as well as a method that computes the remainder operation on two
arguments as prescribed by the IEE754 standard.

Java in the Database: Questions and Answers

8

Which Java Classes Are Supported in the Java API?
Not all Java API classes are supported in the database. Some classes, for
example the java.awt package that contains user interface components for
applications, is not appropriate inside a database server. Other classes,
including part of java.io, deal with writing information to a disk, and this also
is not supported in the database server environment.

Can I Install My Own Java Classes?
You can install your own Java classes into the database as, for example, a user-
created Employee class or Inventory class that a developer designed, wrote,
and compiled with a Java compiler.

User-defined Java classes can contain both information and methods. Once
installed in a database, Adaptive Server lets you use these classes in all parts
and operations of the database and execute their functionality (in the form of
class or instance methods) as easily as calling a stored procedure.

Can I Access Data Using Java?
The JDBC interface is an industry standard designed to access database
systems. The JDBC classes are designed to connect to a database, request data
using SQL statements, and return results that can be processed in the client
application.

You can connect from a client application to Adaptive Server Enterprise via
JDBC, using jConnect or a JDBC/ODBC bridge. Adaptive Server also
provides an internal JDBC driver, which permits Java classes installed in a
database to use JDBC classes that execute SQL statements.

Can I Move Classes from Client to Server?
The Java in Adaptive Server design allows you to create Java classes that can
be moved between levels of an enterprise application: The same Java class can
be integrated into either the client application, a middle tier, or the database.

CHAPTER 1 An Introduction to Java in the Database

9

How Do I Use Java Classes in SQL?
Using Java classes, whether user-defined or from the Java API, in SQL is a
three-step activity:

1 Write or acquire a set of Java classes that you want to use as SQL
datatypes.

2 Install those classes in the Adaptive Server database.

3 Use those classes in SQL code:

• Call class (static) methods of those classes as UDFs.

• Declare the Java classes as datatypes of SQL columns, variables, and
parameters. In this book, they are called Java-SQL columns,
variables, and parameters.

• Reference the Java-SQL columns, their fields, and their methods.

Can I Find More Information About Java in the Database?
There are many books about Java and Java in the database. Two particularly
useful books are:

• James Gosling, Bill Joy, and Guy Steele, The Java Language
Specification, Addison-Wesley, 1996.

• Graham Hamilton and Rick Cattell, JDBC: A Java SQL API, Version 1.20,
JavaSoft, January 10, 1997.

What You Cannot Do with Java in the Database
Adaptive Server is a runtime environment for Java classes, not a Java
development environment.

You cannot carry out these tasks in the database:

• Edit class source files (*.java files).

• Compile Java class source files (*.java files).

• Execute Java APIs that are not supported, such as applet and visual
classes.

In this release of Adaptive Server, certain other restrictions apply:

Java in the Database: Questions and Answers

10

• If a Java method accesses the database through JDBC, result-set values are
available only to the Java method, not to the client application.

• Output parameters are not supported. A method can manipulate the data it
receives from a JDBC connection, but the only value it can return to its
caller is a single return value declared as part of its definition.

CHAPTER 1 An Introduction to Java in the Database

11

Sample Java Classes
The chapters of this book use simple Java classes to illustrate basic principles
for using Java in the database. You can find copies of these classes in the
chapters that describe them and in the Sybase release directory in
$SYBASE/$SYBASE_ASE/sample/JavaSql (UNIX) or %SYBASE%\Ase-
12_0\sample\JavaSql (Windows NT). This subdirectory also contains Javadoc
facilities so that you can view specifications about sample classes and methods
with your Web browser.

Sample Java Classes

12

13

C H A P T E R 2 Preparing for and Maintaining
Java in the Database

This chapter describes the Java runtime environment, how to enable Java
on the server, and how to install and maintain Java classes in the database.

These topics are discussed:

Name Page

The Java Runtime Environment 14

Enabling the Server for Java 16

Creating Java Classes and JARs 17

Installing Java Classes in the Database 19

Viewing Information about Installed Classes and JARs 22

Downloading Installed Classes and JARs 23

Removing Classes and JARs 24

The Java Runtime Environment

14

The Java Runtime Environment
The Adaptive Server runtime environment for Java requires a Java VM, which
is available as part of the database server, and the Sybase runtime Java classes,
or Java API. If you are running Java applications on the client, you may also
require the Sybase JDBC driver, jConnect, on the client.

Java Classes in the Database
You can use either of the following sources for Java classes:

• Sybase runtime Java classes

• User-defined classes

Sybase Runtime Java Classes

The Sybase Java VM supports a subset of JDK version 1.1.6 (UNIX and
Windows NT) classes and packages.

The Sybase runtime Java classes are the low-level classes installed to Java-
enable a database. They are downloaded when Adaptive Server is installed and
are available thereafter from $SYBASE /$SYBASE_ASE/lib/runtime.zip
(UNIX) or %SYBASE%\%SYBASE_ASE%\lib\runtime.zip (Windows NT).
You do not need to set the CLASSPATH environment variable specifically for
Java in Adaptive Server.

Sybase does not support runtime Java packages and classes that assume a
screen display, deal with networking and remote communications, or handle
security. See Chapter 7, “Reference Topics” for a list of supported and not-
supported packages and classes.

User-Defined Java Classes

You install user-defined classes into the database using the installjava utility.
Once installed, these classes are available from other classes in the database
and from SQL as user-defined datatypes.

CHAPTER 2 Preparing for and Maintaining Java in the Database

15

JDBC Drivers
The Sybase internal JDBC driver that comes with Adaptive Server supports
JDBC version 1.1.

If your system requires a JDBC driver on the client, you must use jConnect
version 4.1, which also supports JDBC version 1.1.

Enabling the Server for Java

16

Enabling the Server for Java
To enable the server and its databases for Java, enter this command from isql:

sp_configure “enable java”, 1

Then shutdown and reboot the server.

By default, Adaptive Server is not enabled for Java. You cannot install Java
classes or perform any Java operations until the server is enabled for Java.

You can increase or decrease the amount of memory available for Java in
Adaptive Server and optimize performance using the sp_configure system
procedure. Java configuration parameters are described in the System
Administration Guide.

Disabling the Server for Java
To disable Java in the database, enter this command from isql:

sp_configure “enable java”, 0

CHAPTER 2 Preparing for and Maintaining Java in the Database

17

Creating Java Classes and JARs
The Sybase-supported classes from the JDK are installed on your system when
you install Adaptive Server version 12 or later. This section describes the steps
for creating and installing your own Java classes.

To make your Java classes (or classes from other sources) available for use in
the server, follow these steps:

1 Write and save the Java code that defines the classes.

2 Compile the Java code.

3 Create Java archive (JAR) files to organize and contain your classes.

4 Install the JARs/classes in the database.

Writing the Java Code
Use the Sun Java SDK or a development tool such as Sybase PowerJ to write
the Java code for your class declarations. Save the Java code in a file with an
extension of .java. The name and case of the file must be the same as that of
the class.

Note Make certain that any Java API classes used by your classes are among
the supported API classes listed in Chapter 7, “Reference Topics”.

Compiling Java Code
This step turns the class declaration containing Java code into a new, separate
file containing byte code. The name of the new file is the same as the Java code
file but has an extension of .class. You can run a compiled Java class in a Java
runtime environment regardless of the platform on which it was compiled or
the operating system on which it runs.

Saving Classes in a JAR File
You can organize your Java classes by collecting related classes in packages
and storing them in JAR files.

Creating Java Classes and JARs

18

To install Java classes in a database, the classes or packages must first be saved
in a JAR file, in uncompressed form. To create an uncompressed JAR file that
contains Java classes, use the Java jar cf0 command.

In this UNIX example, the jar command creates an uncompressed JAR file that
contains all .class files in the jcsPackage directory:

jar cf0 jcsPackage.jar jcsPackage/*.class

Note that the “0” in cf0 is “zero.”

JAR files allow you to install or remove related classes as a group.

CHAPTER 2 Preparing for and Maintaining Java in the Database

19

Installing Java Classes in the Database
To install Java classes from a client operating system file, use the installjava
(UNIX) or instjava (Windows NT) utility from the command line.

Refer to Adaptive Server Utilities Programs for your platform for detailed
information about these utilities. Both utilities perform the same tasks; for
simplicity, this document uses UNIX examples.

Using installjava
installjava copies a JAR file into the Adaptive Server system and makes the
Java classes contained in the JAR available for use in the current database. The
syntax is:

installjava
 -f file_name
 [-new | -update]
 [-j jar_name]
 ...

For example, to install classes in the addr.jar file, enter:

installjava -f “/home/usera/jars/addr.jar”

The –f parameter specifies an operating system file that contains a JAR. You
must use the complete path name for the JAR.

This section describes retained JAR files (using -j) and updating installed JARs
and classes (using new and update). For more information about these and the
other options available with installjava , see the Utility Programs manual for
your platform.

Retaining the JAR File

When a JAR is installed in a database, the server disassembles the JAR,
extracts the classes, and stores them separately. The JAR is not stored in the
database unless you specify installjava with the -j parameter.

Use of -j determines whether the Adaptive Server system retains the JAR
specified in installjava or uses the JAR only to extract the classes to be
installed.

• If you do not specify the -j parameter, the Adaptive Server system does not
retain any association of the classes with the JAR. This is the default
option.

Installing Java Classes in the Database

20

• If you do specify the -j parameter, Adaptive Server installs the classes
contained in the JAR in the normal manner, and then retains the JAR and
its association with the installed classes.

If you retain the JAR file:

• You can remove the JAR and all classes associated with it, all at once, with
the remove java statement. Otherwise, you must remove each class or
package of classes one at a time.

• Other systems may request that the class associated with a given Java
column be downloaded with the column value. If a class retains its
association with the JAR, the Adaptive Server system can download the
JAR, rather than individual classes.

Updating Installed Classes

The new and update clauses of installjava indicate whether you want new
classes to replace currently installed classes.

• If you specify new, you cannot install a class with the same name as an
existing class.

• If you specify update, you can install a class with the same name as an
existing class, and the newly installed class replaces the existing class.

 Warning! If you alter a class used as a column datatype by reinstalling a
modified version of the class, make sure that the modified class can read
and use existing objects (rows) in tables using that class as a datatype.
Otherwise, you may be unable to access existing objects without
reinstalling the class.

Substitution of new classes for installed classes depends also on whether the
classes being installed or the already installed classes are associated with a
JAR. Thus:

• If you update a JAR, all classes in the existing JAR are deleted and
replaced with classes in the new JAR.

• A class can only be associated with a single JAR. You cannot install a class
in one JAR if a class of that same name is already installed and associated
with another JAR. Similarly, you cannot install a class not-associated with
a JAR if that class is currently installed and associated with a JAR.

CHAPTER 2 Preparing for and Maintaining Java in the Database

21

You can, however, install a class in a retained JAR with the same name as
an installed class not associated with a JAR. In this case, the class not
associated with a JAR is deleted and the new class of the same name is
associated with the new JAR.

If you want to reorganize your installed classes in new JARs, you may find it
easier to first disassociate the affected classes from their JARs. See “Retaining
Classes” on page 24 for information about disassociating classes from JARs.

Referencing Other Java-SQL Classes
Installed classes can reference other classes in the same JAR file and classes
previously installed in the same database, but they cannot references classes in
other databases.

If the classes in a JAR file do reference undefined classes, an error may result:

• If an undefined class is referenced directly in SQL, it causes a syntax error
for “undefined class.”

• If an undefined class is referenced within a Java method that has been
invoked, it throws a Java exception that may be caught in the invoked Java
method or cause the general SQL exception described in “Exceptions in
Java-SQL Methods” on page 35.

The definition of a class can contain references to unsupported classes and
methods as long as they are not actively referenced or invoked. Similarly, an
installed class can contain a reference to a user-defined class that is not
installed in the same database as long as the class is not instantiated or
referenced.

Viewing Information about Installed Classes and JARs

22

Viewing Information about Installed Classes and JARs
To view information about classes and JARs installed in the database, use the
sp_helpjava system procedure.The syntax is:

sp_helpjava [‘class’ [, name [,detail]] | ‘jar’ [, name]]

To view detailed information about the Address class, for example, log in to
isql and enter:

sp_helpjava “class”, Address, detail

Refer to “sp_helpjava” in the Reference Manual for more information.

CHAPTER 2 Preparing for and Maintaining Java in the Database

23

Downloading Installed Classes and JARs
You can download copies of Java classes installed on one database for use in
other databases or applications.

Use the extractjava system utility to download a JAR file and its classes to a
client operating system file. For example, to download addr.jar to
~/home/usera/jars/addrcopy.jar, enter:

extractjava –j ‘addr.jar‘ -f
 ‘~/home/usera/jars/addrcopy.jar'

Refer to the Adaptive Server Utility Programs manual for more information
about this utility.

Removing Classes and JARs

24

Removing Classes and JARs
Use the Transact-SQL remove java statement to uninstall one or more Java-
SQL classes from the database. remove java can specify one or more Java
class names, Java package names, or retained JAR names. For example, to
uninstall the package utilityClasses, from isql enter:

remove java package “utilityClasses”

Note Adaptive Server does not allow you to remove classes that are used as
the datatypes for columns and parameters. Make sure that you do not remove
subclasses or classes that are used as variables or UDF return types.

When you specify remove java package the command deletes all classes in
the specified package and all of its sub-packages.

See the Reference Manual for more information about remove java.

Retaining Classes
You can delete a JAR file from the database but retain its classes as classes no
longer associated with a JAR. Use remove java with the retain classes option
if, for example, you want to rearrange the contents of several retained JARs.

For example, from isql enter:

remove java jar 'utilityClasses' retain classes

Once the classes are disassociated from their JARs, you can associate them
with new JARs using installjava update.

25

C H A P T E R 3 Using Java Classes in SQL

This chapter describes how to use Java classes in an Adaptive Server
environment. The first sections give you enough information to get
started; succeeding sections provide more advanced information.

These topics are discussed:

In this document, SQL columns and variables whose datatypes are Java-
SQL classes are described as Java-SQL columns and Java-SQL variables
or as Java-SQL data items.

The sample classes used in this chapter can be found in “Sample Java
Classes” on page 11 and in $SYBASE/$SYBASE_ASE/sample/JavaSql
(UNIX) or %SYBASE%\Ase-12_0\sample\JavaSql (Windows NT).

Name Page

General Considerations 26

Using Java Classes as Datatypes 28

Creating Tables with Java-SQL Columns 29

Selecting, Inserting, Updating, and Deleting Java Objects 31

Referencing Java Fields in SQL 33

Invoking Java Methods in SQL 34

Representing Java Instances 36

Datatype Mapping Between Java and SQL Fields 40

Subtypes in Java-SQL Data 42

The Treatment of Nulls in Java-SQL Data 45

Java-SQL String Data 48

Type and Void Methods 49

Equality and Ordering Operations 52

Static Variables in Java-SQL Classes 55

Java Classes in Multiple Databases 56

Sample Java Classes 60

General Considerations

26

General Considerations
Before you use Java in your Adaptive Server database, here are some general
considerations.

• Java-SQL classes contain:

• Fields that have declared Java datatypes

• Methods whose parameters and results have declared Java datatypes

• Java datatypes for which there are corresponding SQL datatypes are
defined in “Datatype Mapping Between Java and SQL” on page 166.

• Java-SQL classes can include classes, fields, and methods that are private,
protected, friendly, or public.

Classes, fields and methods that are public can be referenced in SQL.
Classes, fields, and methods that are private, protected, or friendly
cannot be referenced in SQL, but they can be referenced in Java, and are
subject to normal Java rules.

• Java-SQL classes, fields, and methods all have various syntactic
properties:

• Classes – the number of fields and their names

• Field – their datatypes

• Methods – the number of parameters and their datatypes, and the
datatype of the result

The SQL system determines these syntactic properties from the Java-SQL
classes themselves, using the Java Reflection API.

Java-SQL Names
Java-SQL class names (identifiers) are limited to 255 bytes. Java-SQL field
and method names can be any length, but they must be 255 bytes or less if you
use them in Transact-SQL. All Java-SQL names must conform to the rules for
Transact-SQL identifiers if you use them in Transact-SQL statements.

Class, field, and method names of 30 or more bytes must be surrounded by
quotation marks.

CHAPTER 3 Using Java Classes in SQL

27

The first character of the name must be either an alphabetic character
(uppercase or lowercase) or an underscore (_) symbol. Subsequent characters
can include alphabetic characters, numbers, the dollar ($) symbol, or the
underscore (_) symbol.

Java-SQL names are always case sensitive, regardless of whether the SQL
system is specified as case sensitive or case insensitive.

See Java-SQL Identifiers on page 168 for more information about identifiers.

Using Java Classes as Datatypes

28

Using Java Classes as Datatypes
After you have installed a set of Java classes, you can reference them as
datatypes in SQL. To be used as a column datatype, a Java-SQL class must be
defined as public and must implement either java.io.Serializable or
java.io.Externalizable.

You can specify Java-SQL classes as:

• The datatypes of SQL columns

• The datatypes of Transact-SQL variables and parameters to Transact-SQL
stored procedures

• Default values for SQL columns

When you create a table, you can specify Java-SQL classes as the datatypes of
SQL columns:

create table emps (
name varchar(30),
home_addr Address,
mailing_addr Address2Line null)

The name column is an ordinary SQL character string, the home_addr and
mailing_addr columns can contain Java objects, and Address and
Address2Line are Java-SQL classes that have been installed in the database.

You can specify Java-SQL classes as the datatypes of Transact-SQL variables:

declare @A Address
declare @A2 Address2Line

You can also specify default values for Java-SQL columns, subject to the
normal constraint that the specified default must be a constant expression. This
expression is normally a constructor invocation using the new operator with
constant arguments, such as the following:

create table emps (
name varchar(30),
home_addr Address default new Address

(’Not known’, ’’),
mailing_addr Address2Line

)

CHAPTER 3 Using Java Classes in SQL

29

Creating Tables with Java-SQL Columns
When you create or alter tables with Java-SQL columns, you can specify any
installed Java class as a column datatype. You can also specify how the
information in the column is to be stored. Your choice of storage options
influences the speed of referencing and updating the specified fields and
whether they can be indexed.

Column values for a row normally are stored “in row,” that is, consecutively on
the data pages allocated to a table. However, you can choose to store Java-SQL
columns in a separate “off row” location in the same way that text and image
data items are stored. The default for Java-SQL columns is off row.

If a Java-SQL column is stored in row:

• Java objects are processed faster than objects that are stored off row.

• An object stored in row cannot occupy more than 255 bytes. This includes
its entire serialization, not just the values in its fields. A Java object whose
runtime representation is more than 255 bytes generates an exception, and
the command aborts.

Note You can use the datalength system function to find the length of the
object. See the Reference Manual for information about datalength.

If a Java-SQL column is stored off row, the column is subject to the restrictions
that apply to text and image columns:

• The column cannot be referenced in a check constraint.

• The column cannot be included in the column select list of a select query
with select distinct.

• The column cannot be specified in a comparison operator, in a predicate,
or in a group by clause.

The syntax for create table with the in row/off row option is:

create table...column_name datatype
 [default {constant_expression | user | null}]
 {[{identity | null | not null}]
 [off row | in row]...

Similarly, the syntax for alter table is:

alter table...{add column_name datatype
 [default {constant_expression | user | null}]
 {identity | null} [off row | in row]...

Creating Tables with Java-SQL Columns

30

The following code fragment alters the emps table, adding a new column
vacation_addr with an Address datatype:

alter table emps add vacation_addr Address null

CHAPTER 3 Using Java Classes in SQL

31

Selecting, Inserting, Updating, and Deleting Java
Objects

After you specify Java-SQL columns, the values that you assign to those data
items must be Java instances. Such instances are generated initially by calls to
Java constructors using the new operator. You can generate Java instances for
both columns and variables.

A constructor method has the same name as the class, and has no declared
datatype. If you do not include a constructor method in your class definition, a
default method is provided by the Java base object. You can supply more than
one constructor for each class, with different numbers and types of arguments.
When a constructor is invoked, the one with the proper number and type of
arguments is used.

In the following example, Java instances are generated for both columns and
variables:

declare @A Address, @AA Address, @A2 Address2Line,
 @AA2 Address2Line

 select @A = new Address()
 select @AA = new Address(’123 Main Street’, ’99123’)
 select @A2 = new Address2Line()
 select @AA2 = new Address2Line(’987 Front Street’,
 ’Unit 2’, ’99543’)

 insert into emps values(’John Doe’, new Address(),
 new Address2Line())
 insert into emps values(’Bob Smith’, new Address(’432 Elm
 Street', ‘99654’), new Address2Line('PO Box 99',
 'attn: Bob Smith', '99678'))

Values assigned to Java-SQL columns and variables can then be assigned to
other Java-SQL columns and variables. For example:

declare @A Address, @AA Address, @A2 Address2Line,
 @AA2 Address2Line

 select @A = home_addr, @A2 = mailing_addr from emps
 where name = 'John Doe'
 insert into emps values ('George Baker', @A, @A2)

 select @AA2 = @A2
 update emps
 set home_addr = new Address('456 Shoreline Drive', '99321'),
 mailing_addr = @AA2

Selecting, Inserting, Updating, and Deleting Java Objects

32

 where name = ’Bob Smith’

You can also copy values of Java-SQL columns from one table to another. For
example:

create table trainees (
name char(30),
home_addr Address,
mailing_addr Address2Line null

)
insert into trainees
select * from emps

where name in (’Don Green’, ’Bob Smith’,
’George Baker’)

CHAPTER 3 Using Java Classes in SQL

33

Referencing Java Fields in SQL
You can reference and update the fields of Java-SQL columns and of Java-SQL
variables with normal SQL qualification. To avoid ambiguities with the SQL
use of dots to qualify names, use a double-angle (>>) to qualify Java field and
method names when referencing them in SQL.

declare @name varchar(100), @street varchar(100),
 @streetLine2 varchar(100), @zip char(10), @A Address

 select @A = new Address()
 select @A>>street = ’789 Oak Lane’
 select @street = @A>>street

 select @street = home_addr>>street, @zip = home_addr>>zip from emps
 where name = ’Bob Smith’
 select @name = name from emps
 where home_addr>>street= ’456 Shoreline Drive’

 update emps
 set home_addr>>street = ’457 Shoreline Drive’,

home_addr>>zip = ’99323’
 where home_addr>>street = ’456 Shoreline Drive’

Invoking Java Methods in SQL

34

Invoking Java Methods in SQL
You can invoke Java methods in SQL by referencing them, with name
qualification, on instances for instance methods, and on either instances or
classes for class methods.

Instance methods are generally closely tied to the data encapsulated in an
instance of their class. A class method is the same as a static method. Class
methods often apply to objects and values from a wide range of classes.

Once you have installed a class method, it is ready for use. A class that contains
a class method for use as a function must be public, but it does not need to be
serializable.

One of the primary benefits of using Java with Adaptive Server is that you can
use class methods that return a value to the caller as user-defined functions
(UDFs).

You can use a Java class method as a UDF in a stored procedure, a trigger, a
where clause, or anywhere that you can use a built-in SQL function.

Sample Methods
The sample Address and Address2Line classes have instance methods named
toString(), and the sample Misc class has class methods named
stripLeadingBlanks(), getNumber(), and getStreet(). You can invoke value
methods as functions in a value expression.

declare @name varchar(100)
declare @street varchar(100)
declare @streetnum int
declare @A2 Address2Line

select @name = Misc.stripLeadingBlanks(name),

@street = Misc.stripLeadingBlanks(home_addr>>street),
@streetnum = Misc.getNumber(home_addr>>street),
@A2 = mailing_addr

from emps
where home_addr>>toString() like ’%Shoreline%’

For information about void methods (methods with no returned value) see
“Type and Void Methods” on page 49.

CHAPTER 3 Using Java Classes in SQL

35

Exceptions in Java-SQL Methods
When the invocation of a Java-SQL method completes with unhandled
exceptions, a SQL exception is raised, and this error message displays:

Java method terminated with exception

The message text for the exception consists of the name of the Java class that
raised the exception, followed by the character string (if any) supplied when
the Java exception was thrown.

Representing Java Instances

36

Representing Java Instances
When you select a Java-SQL data item in isql, Adaptive Server returns the
object (the reference to the Java instance), not the value. Adaptive Server must
use the object to interact with the Java VM.

If, for example, you want to use an actual string value, you must invoke a
method that translates the object into a char or varchar value. The toString()
method in the Address class is an example of such a method. Use toString()
or a similar method for numbers when you want to:

• Display or print the value

• Use a datatype that does not map to a SQL datatype

• Compare values

When you use the toString() method, Adaptive Server imposes a limit of 255
characters. The display software on your computer may truncate the data item
further so that it fits on the screen without wrapping.

If you include a toString() or similar method in each class, you can return the
value of the object’s toString() method in either of two ways:

• You can select a particular field in the Java-SQL column, which
automatically invokes toString():

select home_addr>>street from emps

• You can select the column and the toString() method, which lists in one
string all of the field values in the column:

select home_addr>>toString() from emps

CHAPTER 3 Using Java Classes in SQL

37

Assignment Properties of Java-SQL Data Items
The values assigned to Java-SQL data items are derived ultimately from values
constructed by Java-SQL methods in the Java VM. However, the logical
representation of Java-SQL variables, parameters, and results is different from
the logical representation of Java-SQL columns.

• Java-SQL columns, which are persistent, are Java serialized streams stored
in the containing row of the table. They are stored values containing
representations of Java instances.

• Java-SQL variables, parameters, and function results are transient. They
do not actually contain Java-SQL instances, but instead contain references
to Java instances contained in the Java VM.

These differences in representation give rise to differences in assignment
properties as these examples illustrate.

• The Address constructor method with the new operator is evaluated in the
Java VM. It constructs an Address instance and returns a reference to it.
That reference is assigned as the value of Java-SQL variable @A:

declare @A Address, @AA Address, @A2 Address2Line,
@AA2 Address2Line

select @A = new Address(’432 Post Lane’, ’99444’)

• Variable @A contains a reference to a Java instance in the Java VM. That
reference is copied into variable @AA. Variables @A and @AA now
reference the same instance.

select @AA=@A

• This assignment modifies the zip field of the Address referenced by @A.
This is the same Address instance that is referenced by @AA. Therefore,
the values of @A.zip and @AA.zip are now both '99222'.

select @A>>zip=’99222’

• The Address constructor method with the new operator constructs an
Address instance and returns a reference to it. However, since the target
is a Java-SQL column, the SQL system serializes the Address instance
denoted by that reference, and copies the serialized value into the new row
of the emps table.

insert into emps
values (’Don Green’, new Address(’234 Stone
Road’, ’99777’), new Address2Line())

Assignment Properties of Java-SQL Data Items

38

The Address2Line constructor method operates the same way as the
Address method, except that it returns a default instance rather than an
instance with specified parameter values. The action taken is, however, the
same as for the Address instance. The SQL system serializes the default
Address2Line instance, and stores the serialized value into the new row
of the emps table.

• The insert statement specifies no value for the mailing_addr column, so
that column will be set to null, in the same manner as any other column
whose value is not specified in an insert. This null value is generated
entirely in SQL, and initialization of the mailing_addr column does not
involve the Java VM at all.

insert into emps (name, home_addr) values (’Frank Lee’, @A)

The insert statement specifies that the value of the home_addr column is
to be taken from the Java-SQL variable @A. That variable contains a
reference to an Address instance in the Java VM. Since the target is a
Java-SQL column, the SQL system serializes the Address instance
denoted by @A, and copies the serialized value into the new row of the
emps table.

• This statement inserts a new emps row for 'Bob Brown.' The value of the
home_addr column is taken from the SQL variable @A. It is also a
serialization of the Java instance referenced by @A.

insert into emps (name, home_addr) values (’Bob Brown’, @A)

• This update statement sets the zip field of the home_addr column of the
'Frank Lee' row to '99777.' This has no effect on the zip field in the 'Bob
Brown' row, which is still '99444.'

update emps
set home_addr>>zip = ’99777’
where name = ’Frank Lee’

• The Java-SQL column home_addr contains a serialized representation of
the value of an Address instance. The SQL system invokes the Java VM
to de-serialize that representation as a Java instance in the Java VM, and
return a reference to the new deserialized copy. That reference is assigned
to @AA. The deserialized Address instance that is referenced by @AA is
entirely independent of both the column value and the instance referenced
by @A.

select @AA = home_addr from emps where name = ’Frank Lee’

CHAPTER 3 Using Java Classes in SQL

39

• This assignment modifies the zip field of the Address instance referenced
by @A. This instance is a copy of the home_addr column of the 'Frank Lee'
row, but is independent of that column value. The assignment therefore
does not modify the zip field of the home_addr column of the 'Frank Lee'
row.

select @A>>zip = ’95678’

Datatype Mapping Between Java and SQL Fields

40

Datatype Mapping Between Java and SQL Fields
When you transfer data in either direction between the Java VM and Adaptive
Server, you must take into account that the datatypes of the data items are
different in each system. Adaptive Server automatically maps SQL items to
Java items and vice versa according to the correspondence tables in “Datatype
Mapping Between Java and SQL” on page 166.

Thus, SQL type char translates to Java type String, the SQL type binary
translates to the Java type byte[], and so on.

• For the datatype correspondences from SQL to Java, char, varchar, and
varbinary types of any length correspond to Java String or byte[]
datatypes, as appropriate.

• For the datatype correspondences from Java to SQL:

• The Java String and byte[] datatypes correspond to SQL varchar(255)
and varbinary(255), where the maximum length value of 255 bytes is
defined by Adaptive Server.

• The Java BigDecimal datatype corresponds to SQL
numeric(precision,scale), where precision and scale are defined by
the user.

Since the maximum length values for varchar and varbinary are 255 bytes, the
Address and Address2Line classes, street, zip, and line2 fields, whose Java
datatypes are all String, are treated in SQL as datatype varchar(255).

An expression whose datatype is a Java object type is converted to the
corresponding SQL datatype only when the expression is used in a SQL
context. For example, if the field home_addr>>street for employee ‘Smith’ is
260 characters, and begins ‘6789 Main Street ...:

select Misc.getStreet(home_addr>>street) from emps where name=‘Smith’

The expression in the select list passes the 260-character value of
home_addr>>street to the getStreet() method (without truncating it to 255
characters). The getStreet() method then returns the 255-character string
beginning ‘Main Street….’. That 255-character string is now an element of the
SQL select list, and is, therefore, converted to the SQL datatype and (if need
be) truncated to 255 characters.

CHAPTER 3 Using Java Classes in SQL

41

Character Sets for Data and Identifiers
The character set for both Java program text and for Java String data is
Unicode.

In Java program text installed in SQL, the Java identifiers used in the fully
qualified names of visible classes or in the names of visible members can use
only Latin characters and Arabic numerals.

Fields of Java-SQL classes can also contain Unicode data.

Subtypes in Java-SQL Data

42

Subtypes in Java-SQL Data
Class subtypes allow you to use the substitution and method overloading
characteristics of Java. A conversion from a class to one of its superclasses is
a widening conversion; a conversion from a class to one of its subclasses is a
narrowing conversion.

• Widening conversions are performed implicitly with normal assignments
and comparisons. They are always successful, since every subclass
instance is also an instance of the superclass.

• Narrowing conversions must be specified with explicit convert
expressions. A narrowing conversion is successful only if the superclass
instance is an instance of the subclass, or a subclass of the subclass.
Otherwise, an exception occurs.

Widening Conversions
You do not need to use the convert function to specify a widening conversion.
For example, since the Address2Line class is a subclass of the Address class,
you can assign Address2Line values to Address data items. In the emps table,
the home_addr column is an Address datatype and the mailing_addr column
is an Address2Line datatype:

update emps
set home_addr = mailing_addr
where home_addr is null

For the rows fulfilling the where clause, the home_addr column contains an
Address2Line, even though the declared type of home_addr is Address.

Such an assignment implicitly treats an instance of a class as an instance of a
superclass of that class. The runtime instances of the subclass retain their
subclass datatypes and associated data.

Narrowing Conversions
You must use the convert function to convert an instance of a class to an
instance of a subclass of the class. For example:

update emps
 set mailing_addr = convert(Address2Line, home_addr)
 where mailing_addr is null

CHAPTER 3 Using Java Classes in SQL

43

The narrowing conversions in the update statement cause an exception if they
are applied to any home_addr column that contains an Address instance that
is not an Address2Line. You can avoid such exceptions by including a
condition in the where clause:

update emps
 set mailing_addr = convert(Address2Line, home_addr)
 where mailing_addr is null
 and home_addr>>getClass()>>toString() = ’Address2Line’

The expression “home_addr>>getClass()>>toString()” invokes getClass()
and toString() methods of the Java Object class. The Object class is implicitly
a superclass of all classes, so the methods defined for it are available for all
classes.

You can also use a case expression:

update emps
 set mailing_addr =
 case
 when home_addr>>getClass()>>toString()
 =’Address2Line’
 then convert(Address2Line, home_addr)
 else null
 end

where mailing_addr is null

Runtime vs. Compile-Time Datatypes
Neither widening nor narrowing conversions modify the actual instance value
or its runtime datatype; they simply specify the class to be used for the compile-
time type. Thus, when you store Address2Line values from the mailing_addr
column into the home_address column, those values still have the runtime type
of Address2Line.

For example, the Address class and the Address2Line subclass both have the
method toString(), which returns a String form of the complete address data.

select name, home_addr>>toString() from emps
 where home_addr>>toString() not like ’%Line2=[]’

Subtypes in Java-SQL Data

44

For each row of emps, the declared type of the home_addr column is Address,
but the runtime type of the home_addr value is either Address or
Address2Line, depending on the effect of the previous update statement. For
rows in which the runtime value of the home_addr column is an Address, the
toString() method of the Address class is invoked, and for rows in which the
runtime value of the home_addr column is Address2Line, the toString()
method of the Address2Line subclass is invoked.

See “Null Values When Using the SQL convert Function” on page 47 for a
description of null values for widening and narrowing conversions.

CHAPTER 3 Using Java Classes in SQL

45

The Treatment of Nulls in Java-SQL Data
This section discusses the use of nulls in Java-SQL data items.

References to Fields and Methods of Null Instances
If the value of the instance specified in a field reference is null, then the field
reference is null. Similarly, if the value of the instance specified in an instance
method invocation is null, then the result of the invocation is null.

In Java, if you attempt to reference a field of a null instance, an exception is
raised. Java in Adaptive Server does not follow this convention, allowing you
to write select and other statements, even if some rows in emps contain null
values for home_addr. For example:

select name, home_addr>>zip from emps
where home_addr>>zip in (’95123’, ’95125’, ’95128’)

For rows whose home_addr column is null, the field reference
home_addr>>zip is also null. The where clause is evaluated for each row of
emps, including those rows in which the home_addr column is null.

Note, however, that this rule for field references with null instances only
applies to field references in source (right-side) contexts, not to field references
that are targets (left-side) of assignments or set clauses. For example:

update emps
set home_addr>>zip = ’99123’
where name = ’Charles Green’

This where clause is obviously true for the ‘Charles Green’ row, so the update
statement tries to perform the set clause. This raises an exception, since you
cannot assign a value to a field of a null instance as the null instance has no
field to which a value can be assigned. Thus, field references to fields of null
instances are valid and return the null value in right-side contexts, and cause
exceptions in left-side contexts.

The same considerations apply to invocations of methods of null instances, and
the same rule is applied. For example, if we modify the previous example and
invoke the toString() method of the home_addr column:

select name, home_addr>>toString() from emps
 where home_addr>>toString() = ’Street=234 Stone
 Road ZIP= 99777’

The Treatment of Nulls in Java-SQL Data

46

If the value of the instance specified in an instance method invocation is null,
then the result of the invocation is null. Hence, the select statement is valid
here, whereas it raises an exception in Java.

Null Values as Arguments to Java-SQL Methods
Null parameter values are independent of the actions of the method for which
they are an argument, but instead depend on the ability of the return datatype
to deliver a null value.

You cannot pass the null value as a parameter to a Java scalar type method; Java
scalar types are always non-nullable. However, Java object types can accept
null values.

For the following Java-SQL class:

public class General implements java.io.Serializable {
 public static int identity1(int I) {return I;}
 public static java.lang.Integer identity2
 (java.lang.Integer I) {return I;}
 public static Address identity3 (Address A) {return A;}
 }

Consider these calls:

declare @I int
declare @A Address;

select @I = General.identity1(@I)
select @I = General.identity2(new java.lang.Integer(@I))
select @A = General.identity3(@A)

The values of both variable @I and variable @A are null, since values have not
been assigned to them.

• The call of the identity1() method raises an exception. The datatype of the
parameter @I of identity1() is the Java int type, which is scalar and has
no null state. An attempt to pass a null valued argument to identity1()
raises an exception.

• The call of the identity2() method succeeds. The datatype of the
parameter of identity2() is the Java class java.lang.Integer, and the new
expression creates an instance of java.lang.Integer that is set to the value
of variable @I.

• The call of the identity3() method succeeds.

CHAPTER 3 Using Java Classes in SQL

47

A successful call of identity1() never returns a null result, since the return type
has no null state. Successful calls of identity2() and identity3() can return null
results.

Null Values When Using the SQL convert Function
You use the convert function to convert a Java object of one class to a Java
object of a superclass or subclass of that class.

As shown in “Subtypes in Java-SQL Data” on page 42, the home_addr column
of the emps table can contain values of both the Address class and the
Address2Line class. In this example:

select name, home_addr>>street, convert(Address2Line, home_addr)>>line2,
home_addr>>zip from emps

the expression “convert(Address2Line, home_addr)” specifies a datatype
(Address2Line) and an expression (home_addr). At compile-time, the
expression (home_addr) must be a subtype or supertype of the class
(Address2Line). At runtime, the action of this convert invocation depends on
whether the value of the expression is a class, subclass, or superclass:

• If the runtime value of the expression (home_addr) is the specified class
(Address2Line) or its subclass, the value of the expression is returned,
with the specified datatype (Address2Line).

• If the runtime value of the expression (home_addr) is a superclass of the
specified class (Address), then a null is returned.

Adaptive Server evaluates the select statement for each row of the result. For
each row:

• If the value of the home_addr column is an Address2Line, then convert
returns that value, and the field reference extracts the line2 field.

Hence, the results of the select shows the line2 value for those rows whose
home_addr column is an Address2Line and a null for those rows whose
home_addr column is an Address. As described in “The Treatment of Nulls in
Java-SQL Data” on page 45, the select also shows a null line2 value for those
rows in which the home_addr column is null.

Java-SQL String Data

48

Java-SQL String Data
In Java-SQL columns, fields of type String are stored as Unicode.

When a Java-SQL String field is assigned to a SQL data item whose type is
char, varchar, nchar, nvarchar, or text, the Unicode data is converted to the
character set of the SQL system. Conversion errors are specified by the set
char_convert options.

When a SQL data item whose type is char, varchar, nchar, or text is assigned
to a Java-SQL String field that is stored as Unicode, the character data is
converted to Unicode. Undefined codepoints in such data cause conversion
errors.

Zero-Length Strings
In Transact-SQL, a zero-length character string is treated as a null value, and
the empty string () is treated as a single space.

To be consistent with Transact-SQL, when a Java-SQL String value whose
length is zero is assigned to an SQL data item whose type is char, varchar,
nchar, nvarchar, or text, the Java-SQL String value is replaced with a single
space.

For example:

1> declare @s varchar(20)
2> select @s = new java.lang.String()
3> select @s, char_length(@s)
4> go

 (1 row affected)

----------------- -----------------

 1

If the zero-length Java-SQL String value was assigned to the SQL data item as
a zero-length string, that zero-length value would be treated in SQL as a SQL
null, and when assigned to a Java-SQL String, the Java-SQL String would be
a Java null.

CHAPTER 3 Using Java Classes in SQL

49

Type and Void Methods
Java methods (both instance and static) are either type methods or void
methods. In general, type methods return a value of the result type, and void
methods perform some action(s) and return nothing.

For example, in the Address class:

• The toString() method is a type method whose type is String.

• The removeLeadingBlanks() method is a void method.

• The Address constructor method is a type method whose type is the
Address class.

As in Java, you invoke type methods as functions and use the new keyword
when invoking a constructor method:

insert into emps
values (’Don Green’, new Address(’234 Stone Road’, ’99777’),

 new Address2Line())

select name, home_addr>>toString() from emps
 where home_addr>>toString() like ‘%Baker%’

The removeLeadingBlanks() method of the Address class is a void instance
method that modifies the street and zip fields of a given instance. You can
invoke removeLeadingBlanks() for the home_addr column of each row of
the emps table. For example:

update emps
 set home_addr =
 home_addr>>removeLeadingBlanks()

removeLeadingBlanks() removes the leading blanks from the street and zip
fields of the home_addr column. The Transact-SQL update statement does not
provide a framework or syntax for such an action. It simply replaces column
values.

Java Void Instance Methods
To use the “update-in-place” actions of Java void instance methods in the SQL
system, Java in Adaptive Server treats a call of a Java void instance method as
follows:

For a void instance method M() of an instance CI of a class C, written
“CI.M(...)”:

Type and Void Methods

50

• In SQL, the call is treated as a type method call. The result type is
implicitly class C, and the result value is a reference to CI. That reference
identifies the instance CI after the actions of the void instance method call.

• In Java, this call is a void method call, which performs its actions and
returns no value.

For example, you can invoke the removeLeadingBlanks() method for the
home_addr column of selected rows of the emps table as follows:

update emps
 set home_addr = home_addr>>removeLeadingBlanks()
 where home_addr>>removeLeadingBlanks()>>street like “123%”

1 In the where clause, “home_addr>>removeLeadingBlanks()” calls the
removeLeadingBlanks() method for the home_addr column of a row of
the emps table. removeLeadingBlanks() strips the leading blanks from
the street and zip fields of a copy of the column. The SQL system then
returns a reference to the modified copy of the home_addr column. The
subsequent field reference:

home_addr>>removeLeadingBlanks()>>street

returns the street field that has the leading blanks removed. The references
to home_addr in the where clause are operating on a copy of the column.
This evaluation of the where clause does not modify the home_addr
column.

2 The update statement performs the set clause for each row of emps in
which the where clause is true.

3 On the right-side of the set clause, the invocation of
“home_addr>>removeLeadingBlanks()” is performed as it was for the
where clause: removeLeadingBlank() strips the leading blanks from
street and zip fields of that copy. The SQL system then returns a reference
to the modified copy of the home_addr column.

4 The Address instance denoted by the result of the right-side of the set
clause is serialized and copied into the column specified on the left-side of
the set clause: the result of the expression on the right-side of the set
clause is a copy of the home_addr column in which the leading blanks
have been removed from the street and zip fields. The modified copy is
then assigned back to the home_addr column as the new value of that
column.

The expressions of the right and left side of the right-side clause are
independent, as is normal for the update statement.

CHAPTER 3 Using Java Classes in SQL

51

The following update statement shows an invocation of a void instance
method of the mailing_addr column on the on the right side of the set clause
being assigned to the home_address column on the left side.

update emps
 set home_addr = mailing_addr>>removeLeadingBlanks()
 where ...

In this set clause, the void method removeLeadingBlanks() of the
mailing_addr column yields a reference to a modified copy of the
Address2Line instance in the mailing_addr column. The instance denoted by
that reference is then serialized and assigned to the home_addr column. This
action updates the home_addr column; it has no effect on the mailing_addr
column.

Java Void Static Methods
With Adaptive Server Version 12, you cannot invoke a void static method
using a simple SQL execute command. Rather, you must place the invocation
of the void static method in a select statement.

For example, suppose that a Java class C has a void static method M(...), and
assume that M() performs an action you want to invoke in SQL. For example,
M() can use JDBC calls to perform a series of SQL statements that have no
return values, such as create or drop, that would be appropriate for a void
method.

You must invoke the void static method in a select command, such as:

select C.M(...)

To allow void static methods to be invoked using a select, void static methods
are treated in SQL as returning a value of datatype int with a value of null.

Equality and Ordering Operations

52

Equality and Ordering Operations
You can use equality and ordering operators when you use Java in the database;
however, you cannot:

• Reference Java-SQL data items in ordering operations.

• Reference Java-SQL data items in equality operations if, at runtime, their
representation is greater than 255 bytes.

• Use the order by clause, which requires that you determine the sort order.

• Make direct comparisons using the “>”, “<”, “<=”, or “>=” operator.

These equality operations are allowed in JCS:

• Use of the distinct keyword, which is defined in terms of equality of rows,
including Java-SQL columns.

• Direct comparisons using the “=” and “!=” operators.

• Use of the union operator (not union all), which eliminates duplicates,
and requires the same kind of comparisons as the distinct clause.

• Use of the group by clause, which partitions the rows into sets with equal
values of the grouping column.

CHAPTER 3 Using Java Classes in SQL

53

Call-by-Reference for Java Methods
Adaptive Server does not have a defined order for evaluating operands of
comparisons and other operations. Instead, Adaptive Server evaluates each
query and chooses an evaluation order based on the most rapid rate of
execution.

This section describes how different evaluation orders affect the outcome when
you pass columns or variables and parameters as arguments. The examples in
this section use the following Java-SQL class:

public class Utility implements java.io.Serializable {
 public static int F (Address A) {
 if (A.zip.length() > 5) return 0;
 else {A.zip = A.zip + "-1234"; return 1;}

}
 public static int G (Address A) {
 if (A.zip.length() > 5) return 0;
 else {A.zip = A.zip + "-1234"; return 1;}

}
}

Columns
In general, avoid using methods or value-returning contexts that modify their
arguments. Where there are multiple invocations of the same or different
methods, the order of evaluation can affect the outcome.

For example, in this example:

select * from emp E
where Utility.F(E.home_addr) > Utility.F(E.home_addr)

the where clause passes the same home_addr column in two different method
invocations. Consider the evaluation of the where clause for a row whose
home_addr column has a 5-character zip, such as “95123.”

Adaptive Server can initially evaluate either the left or right side of the
comparison. After the first evaluation completes, the second is processed.
Because it executes faster this way, Adaptive Server may let the second
invocation see the modifications of the argument made by the first invocation.

Call-by-Reference for Java Methods

54

In the example, the first invocation chosen by Adaptive Server returns 1, and
the second returns 0. If the left operand is evaluated first, the comparison is
1>0, and the where clause is true; if the right operand is evaluated first, the
comparison is 0>1, and the where clause is false.

Variables and Parameters
Similarly, the order of evaluation can affect the outcome when passing
variables and parameters as arguments.

Consider the following statements:

declare @A Address
declare @Order varchar(20)

select @A = new Address(’95444’, ’123 Port Avenue’)
select case when Utility.F(@A)>Utility.G(@A)

then ‘Left’ else ‘Right’ end
select @Order = case when utility.F(@A) > utility.G(@A)
 then 'Left' else 'Right' end

The new Address has a five-character zip code field. When the case
expression is evaluated, depending on whether the left or right operand of the
comparison is evaluated first, the comparison is either 1>0 or 0>1, and the
@Order variable is set to ‘Left’ or ‘Right’ accordingly.

As for column arguments, the expression value depends on the evaluation
order. Depending on whether the left or right operand of the comparison is
evaluated first, the resulting value of the zip field of the Address instance
referenced by @A is either “95444-4321” or “95444-1234.”

CHAPTER 3 Using Java Classes in SQL

55

Static Variables in Java-SQL Classes
A Java variable that is declared static is associated with the Java class, rather
than with each instance of the class. The variable is allocated once for the entire
class.

For example, you might include a static variable in the Address class that
specifies the recommended limit on the length of the Street field:

public class Address implements java.io.Serializable {
public static int recommendedLimit;
public String street;
public String zip;

 // ...
}

You can specify that a static variable is final, which indicates that it is not
updatable:

public static final int recommendedLimit;

Otherwise, you can update the variable.

You reference a static variable the same way as a dynamic variable—by
qualifying the variable name with an instance of the class:

select Address.recommendedLimit = 20
if Address.recommendedLimit < 50
 select Address.recommendedLimit = Address.recommended_limit + 5

Values assigned to non-final static variables are accessible only within the
current session.

Java Classes in Multiple Databases

56

Java Classes in Multiple Databases
You can store Java classes of the same name in different databases in the same
Adaptive Server system. This section describes how you can use these classes.

Scope
When you install a Java class or set of classes, they are installed in the current
database. When you dump or load a database, the Java-SQL classes that are
currently installed in that database are always included—even if classes of the
same name exist in other databases in the Adaptive Server system.

You can install Java classes with the same name in different databases. These
synonymous classes can be:

• Identical classes that have been installed in different databases.

• Different classes that are intended to be mutually compatible. Thus, a
serialized value generated by either class is acceptable to the other.

• Different classes that are intended to be “upward” compatible. That is, a
serialized value generated by one of the classes should be acceptable to the
other, but not vice versa.

• Different classes that are intended to be mutually incompatible; for
example, a class named Sheet designed for supplies of paper, and other
classes named Sheet designed for supplies of linen.

Cross-Database References
You can reference classes in one database from another database.

For example, assume the following configuration:

• The Address class is installed in db1 and db2.

• The emps table has been created in both db1 with owner Smith, and in db2,
with owner Jones.

In these examples, the current database is db1. You can invoke a join or a
method across databases. For example:

• A join across databases might look like this:

declare @count int
select @count(*)

CHAPTER 3 Using Java Classes in SQL

57

from db2.Jones.emps, db1.Smith.emps
where db2.Jones.emps.home_addr>>zip =

db1.Smith.emps.home_addr>>zip

• A method invocation across databases might look like this:

select db2.Jones.emps.home_addr>>toString()
from db2.Jones.emps
where db2.Jones.emps.name = ’John Stone’

In these examples, instance values are not transferred. Fields and methods of
an instance contained in db2 are merely referenced by a routine in db1. Thus,
for across-database joins and method invocations:

• db1 need not contain an Address class.

• If db1 does contain an Address class, it can have completely different
properties than the Address class in db2.

Inter-Class Transfers
You can assign an instance of a class in one database to an instance of a class
of the same name in another database. Instances created by the class in the
source database are transferred into columns or variables whose declared type
is the class in the current (target) database.

You can insert or update from a table in one database to a table in another
database. For example:

insert into db1.Smith.emps select * from
db2.Jones.emps

update db1.Smith.emps
set home_addr = (select db2.Jones.emps.home_addr

from db2.Jones.emps
where db2.Jones.emps.name =

db1.Smith.emps.name)

You can insert or update from a variable in one database to a another database.
(The following fragment is in a stored procedure on db2.) For example:

declare @home_addr Address
select @home_addr = new Address(‘94608’, ‘222 Baker

Street’)
insert into db1.Janes.emps(name, home_addr)

values (‘Jone Stone’, @home_addr)

In these examples, instance values are transferred between databases. You can:

Java Classes in Multiple Databases

58

• Transfer instances between two local databases.

• Transfer instances between a local database and a remote database.

• Transfer instances between a SQL client and an Adaptive Server.

• Replace classes using install and update statements or remove and
update statements.

In an inter-class transfer, the Java serialization is transferred from the source to
the target.

Passing Inter-Class Arguments
You can pass arguments between classes of the same name in different
databases.When passing inter-class arguments:

• A Java-SQL column is associated with the version of the specified Java
class in the database that contains the column.

• A Java-SQL variable (in Transact-SQL) is associated with the version of
the specified Java class in the current database.

• A Java-SQL intermediate result of class C is associated with the version
of class C in the same database as the Java method that returned the result.

• When a Java instance value JI is assigned to a target variable or column,
or passed to a Java method, JI is converted from its associated class to the
class associated with the receiving target or method.

Temporary and Work Databases
All rules for Java classes and databases also apply to temporary databases and
the model database:

• Java-SQL columns of temporary tables contain byte string serializations
of the Java instances.

• A Java-SQL column is associated with the version of the specified class in
the temporary database.

You can install Java classes in a temporary database, but they will persist only
as long as the temporary database persists.

CHAPTER 3 Using Java Classes in SQL

59

The simplest way to provide Java classes for reference in temporary databases
is to install Java classes in the model database. They are then present in any
temporary database derived from the model.

Sample Java Classes

60

Sample Java Classes
This section shows the simple Java classes that this chapter uses to illustrate
Java in Adaptive Server. You can also find these classes and their Java source
code in $SYBASE/$SYBASE_ASE/sample/JavaSql. (UNIX) or
%SYBASE%\Ase-12_0\sample\JavaSql (Windows NT).

This is the Address class:

//
// Copyright (c) 1999
// Sybase, Inc
// Emeryville, CA 94608
// All Rights Reserved
//
/**
* A simple class for address data, to illustrate using a Java class
* as a SQL datatype.
*/

public class Address implements java.io.Serializable {

/**
* The street data for the address.
* @serial A simple String value.
*/
 public String street;

/**
* The zipcode data for the address.
* @serial A simple String value.
*/
 String zip;

/** A default constructor.
*/

public Address () {
 street = "Unknown";
 zip = "None";
 }
/**
* A constructor with parameters
* @param S a string with the street information
* @param Z a string with the zipcode information
*/
 public Address (String S, String Z) {
 street = S;

CHAPTER 3 Using Java Classes in SQL

61

 zip = Z;
 }
/**
* A method to return a display of the address data.
* @returns a string with a display version of the address data.
*/
 public String toString() {
 return "Street= " + street + " ZIP= " + zip;
 }
/**
* A void method to remove leading blanks.
* This method uses the static method
* <code>Misc.stripLeadingBlanks</code>.
*/

public void removeLeadingBlanks() {
 street = Misc.stripLeadingBlanks(street);
 zip = Misc.stripLeadingBlanks(street);
 }
}

This is the Address2Line class, which is a subclass of the Address class:

//
// Copyright (c) 1999
// Sybase, Inc
// Emeryville, CA 94608
// All Rights Reserved
//
/**
* A subclass of the Address class that adds a seond line of address data,
* <p>This is a simple subclass to illustrate using a Java subclass
* as a SQL datatype.
*/
public class Address2Line extends Address implements java.io.Serializable {

/**
* The second line of street data for the address.
* @serial a simple String value
*/
 String line2;
/**
* A default constructor
*/
 public Address2Line () {
 street = "Unknown";
 line2 = " ";
 zip = "None";

Sample Java Classes

62

 }
/**
* A constructor with parameters.
* @param S a string with the street information
* @param L2 a string with the second line of address data
* @param Z a string with the zipcode information
*/
public Address2Line (String S, String L2, String Z) {
 street = S;
 line2 = L2;
 zip = Z;
}

/**
* A method to return a display of the address data
* @returns a string with a display version of the address data
*/

public String toString() {
 return "Street= " + street + " Line2= " + line2 + " ZIP= " + zip;
}

/**
* A void method to remove leading blanks.
* This method uses the static method
* <code>Misc.stripLeadingBlanks</code>.
*/

public void removeLeadingBlanks() {
 line2 = Misc.stripLeadingBlanks(line2);
 super.removeLeadingBlanks();
 }
}

The Misc class contains sets of miscellaneous routines:

//
// Copyright (c) 1999
// Sybase, Inc
// Emeryville, CA 94608
// All Rights Reserved
//
/**
* A non-instantiable class with miscellaneous static methods
* that illustrate the use of Java methods in SQL.
*/

CHAPTER 3 Using Java Classes in SQL

63

public class Misc{

/**
* The Misc class contains only static methods and cannot be instantiated.
*/

private Misc() { }

/**
* Removes leading blanks from a String
*/

public static String stripLeadingBlanks(String s) {
 if (s == null) return null;
 for (int scan=0; scan<s.length(); scan++)
 if (!java.lang.Character.isWhitespace(s.charAt(scan)))
 break;
 } else if (scan == s.length()){

return "";
 } else return s.substring(scan);

}
 }

}
return "";

}
/**
* Extracts the street number from an address line.
* e.g., Misc.getNumber(" 123 Main Street") == 123
* Misc.getNumber(" Main Street") == 0
* Misc.getNumber("") == 0
* Misc.getNumber(" 123 ") == 123
* Misc.getNumber(" Main 123 ") == 0
* @param s a string assumed to have address data
* @return a string with the extracted street number
*/

public static int getNumber (String s) {
 String stripped = stripLeadingBlanks(s);

if (s==null) return -1;
 for(int right=0; right < stripped.length(); right++){
 if (!java.lang.Character.isDigit(stripped.charAt(right))) {

break;
 } else if (right==0){

return 0;
 } else {

return java.lang.Integer.parseInt
(stripped.substring(0, right), 10);

Sample Java Classes

64

 }
}
return -1;

}

/**
* Extract the "street" from an address line.
* e.g., Misc.getStreet(" 123 Main Street") == "Main Street"
* Misc.getStreet(" Main Street") == "Main Street"
* Misc.getStreet("") == ""
* Misc.getStreet(" 123 ") == ""
* Misc.getStreet(" Main 123 ") == "Main 123"
* @param s a string assumed to have address data
* @return a string with the extracted street name
*/

public static String getStreet(String s) {
 int left;

if (s==null) return null;
 for (left=0; left<s.length(); left++){

if(java.lang.Character.isLetter(s.charAt(left))) {
break;

} else if (left == s.length()) {
return "";

 } else {
return s.substring(left);

}
}
return "";

 }
}

65

C H A P T E R 4 Data Access Using JDBC

This chapter describes how to use Java Database Connectivity (JDBC) to
access data.

These topics are discussed:

Name Page

Overview 66

JDBC Concepts and Terminology 67

Differences Between Client- and Server-Side JDBC 68

Connections and Permissions 69

Using JDBC to Access Data 70

The JDBCExamples Class 77

Overview

66

Overview
JDBC provides a SQL interface for Java applications. If you want to access
relational data from Java, you must use JDBC calls.

You can use JDBC with the Adaptive Server SQL interface in either of two
ways:

• JDBC on the client – Java client applications can make JDBC calls to
Adaptive Server using the Sybase jConnect JDBC driver.

• JDBC on the server – Java classes installed in the database can make
JDBC calls to the database using the JDBC driver internal to Adaptive
Server.

The use of JDBC calls to perform SQL operations is essentially the same in
both contexts.

This chapter provides sample classes and methods that describe how you might
perform SQL operations using JDBC. These classes and methods are not
intended to serve as templates, but as general guidelines.

CHAPTER 4 Data Access Using JDBC

67

JDBC Concepts and Terminology
JDBC is a Java API and a standard part of the Java class libraries that control
basic functions for Java application development. The SQL capabilities that
JDBC provides are similar to those of ODBC and dynamic SQL.

The following sequence of events is typical of a JDBC application:

1 Create a Connection object – Call the getConnection() class method of
the DriverManager class to create a Connection object. This establishes a
database connection.

2 Generate a Statement object – Use the Connection object to generate a
Statement object.

3 Pass a SQL statement to the Statement object – If the statement is a query,
this action returns a ResultSet object.

The ResultSet object contains the data returned from the SQL statement,
but provides it one row at a time (similar to the way a cursor works).

4 Loop over the rows of the results set – Call the next() method of the
ResultSet object to:

• Advance the current row (the row in the result set that is being
exposed through the ResultSet object) by one row.

• Return a Boolean value (true/false) to indicate whether there is a row
to advance to.

5 For each row, retrieve the values for columns in the ResultSet object – use
the getInt(), getString(), or similar method to identify either the name or
position of the column.

Differences Between Client- and Server-Side JDBC

68

Differences Between Client- and Server-Side JDBC
The difference between JDBC on the client and in the database server is in how
a connection is established with the database environment.

• Client-side JDBC – Requires the Sybase jConnect JDBC driver to
establish a connection. The connection is established by passing
arguments to the DriverManager.getConnection() method. The database
environment is an external application from the perspective of the Java
client application.

• Server-side JDBC – When JDBC is used within the database server, a
connection already exists. A value of “jdbc:default:connection” is passed
to DriverManager.getConnection(), which provides the JDBC
application the ability to work within the current user connection. This is
a safe and efficient operation because the client application has already
passed the database security to establish the connection.

You can write JDBC classes to run both at the client and at the server by
employing a single conditional statement for constructing the URL.

An external connection requires the machine name and port number, while
the internal connection requires one of these values:

• jdbc:default:connection

• jdbc:sybase:ase

• jdbc:default

CHAPTER 4 Data Access Using JDBC

69

Connections and Permissions
• Connection defaults – From server-side JDBC, only the first call to

getConnection("jdbc:default:connection") creates a new connection
with the default values.

Subsequent calls return a wrapper of the current connection with all
connection properties unchanged.

• Access permissions – Like all Java classes in the database, classes
containing JDBC statements can be accessed by any user. There is no
equivalent of the grant execute statement that grants permission to
execute procedures, and there is no need to qualify the name of a class with
the name of its owner.

• Execution permissions – Java classes are executed with the permissions of
the connection executing them. This behavior is different from that of
stored procedures, which execute with the permissions of the owner.

Using JDBC to Access Data

70

Using JDBC to Access Data
Java applications that hold some or all classes in the database have significant
advantages over traditional SQL stored procedures.

This section describes how you can use JDBC to perform the typical operations
of a SQL application. The examples are extracted from the class
JDBCExamples, which is described in “The JDBCExamples Class” on page
77 and in $SYBASE/$SYBASE_ASE/sample/JavaSql (UNIX) or
%SYBASE%\Ase-12_0\sample\JavaSql (Windows NT).

JDBCExamples illustrates the basics of a user interface and shows the internal
coding techniques for SQL operations.

Overview of the JDBCExamples Class
The JDBCExamples class uses the Address class described in “Sample Java
Classes” on page 11. To execute these examples on your machine, install the
Address class on the server and include it in the Java CLASSPATH of the
jConnect client.

You can call the methods of JDBCExamples from either a jConnect client or
Adaptive Server.

Note You must create or drop stored procedures from the jConnect client. The
Adaptive Server internal driver does not support create procedure and drop
procedure statements.

JDBCExamples class methods perform the following SQL operations:

• Create and drop an example table, xmp:

 create table xmp (id int, name varchar(50), home Address)

• Create and drop a sample stored procedure, inout:

create procedure inout @id int, @newname varchar(50),
 @newhome Address, @oldname varchar(50) output, @oldhome
 Address output as

select @oldname = name, @oldhome = home from xmp
 where id=@id
update xmp set name=@newname, home = @newhome
 where id=@id

CHAPTER 4 Data Access Using JDBC

71

• Insert a row into the xmp table.

• Select a row from the xmp table.

• Update a row of the xmp table.

• Call the stored procedure inout, which has both input parameters and
output parameters of datatypes java.lang.String and Address.

JDBCExamples operates only on the xmp table and inout procedure.

The main() and serverMain() Methods
JDBCExamples has two primary methods:

• main() – is invoked from the command line of the jConnect client.

• serverMain() – performs the same actions as main(), but is invoked
within Adaptive Server.

All actions of the JDBCExamples class are invoked by calling one of these
methods, using a parameter to indicate the action to be performed.

Using main()
You can invoke the main() method from a jConnect command line as follows:

java JDBCExamples “ server-name:
 port-number?user= user-name&password= password” action

You can determine server-name and port-number from your interfaces file.
user-name and password are your user name and password. If you omit
&password=password, the default is the empty password. Here are two
examples:

“antibes:4000?user=smith&password=1x2x3”
“antibes:4000?user=sa”

Make sure that you enclose the parameter in quotation marks.

The action parameter can be create table, create procedure, insert, select,
update, or call. It is case insensitive.

You can invoke JDBCExamples from a jConnect command line to create the
table xmp and the stored procedure inout as follows:

java JDBCExamples “antibes:4000?user=sa” CreateTable
java JDBCExamples “antibes:4000?user=sa” CreateProc

Using JDBC to Access Data

72

You can invoke JDBCExamples for insert, select, update, and call actions as
follows:

java JDBCExamples “antibes:4000?user=sa” insert
java JDBCExamples “antibes:4000?user=sa” update
java JDBCExamples “antibes:4000?user=sa” call
java JDBCExamples “antibes:4000?user=sa” select

These invocations display the message “Action performed.”

To drop the table xmp and the stored procedure inout, enter:

java JDBCExamples “antibes:4000?user=sa” droptable
java JDBCExamples “antibes:4000?user=sa” dropproc

Using serverMain()

Note Because the server-side JDBC driver does not support create procedure
or drop procedure, create the table xmp and the example stored procedure
inout with client-side calls of the main() method before executing these
examples. Refer to “Overview of the JDBCExamples Class” on page 70.

After creating xmp and inout, you can invoke the serverMain() method as
follows:

select JDBCExamples.serverMain(’insert’)
go
select JDBCExamples.serverMain(’select’)
go
select JDBCExamples.serverMain(’update’)
go
select JDBCExamples.serverMain(’call’)
go

Note Server-side calls of serverMain() do not require a server-name:port-
number parameter; Adaptive Server simply connects to itself.

Obtaining a JDBC Connection: the Connecter() Method
Both main() and serverMain() call the connecter() method, which returns a
JDBC Connection object. The Connection object is the basis for all subsequent
SQL operations.

CHAPTER 4 Data Access Using JDBC

73

Both main() and serverMain() call connecter() with a parameter that
specifies the JDBC driver for the server- or client-side environment. The
returned Connection object is then passed as an argument to the other methods
of the JDBCExamples class. By isolating the connection actions in the
connecter() method, JDBCExamples’ other methods are independent of their
server- or client-side environment.

Routing the Action to Other Methods: the doAction() Method
The doAction() method routes the call to one of the other methods, based on
the action parameter.

doAction() has the Connection parameter, which it simply relays to the target
method. It also has a parameter locale, which indicates whether the call is
server- or client-side. Connection raises an exception if either create
procedure or drop procedure is invoked in a server-side environment.

Executing Imperative SQL Operations: the doSQL() Method
The doSQL() method performs SQL actions that require no input or output
parameters such as create table, create procedure, drop table, and drop
procedure.

doSQL() has two parameters: the Connection object and the SQL statement it
is to perform. doSQL() creates a JDBC Statement object and uses it to execute
the specified SQL statement.

Executing an update Statement: the UpdateAction() Method
The updateAction() method performs a Transact-SQL update statement. The
update action is:

String sql = "update xmp set name = ?, home = ? where id = ?";

It updates the name and home columns for all rows with a given id value.

The update values for the name and home column, and the id value, are
specified by parameter markers (?). updateAction() supplies values for these
parameter markers after preparing the statement, but before executing it. The
values are specified by the JDBC setString(), setObject(), and setInt()
methods with these parameters:

Using JDBC to Access Data

74

• The ordinal parameter marker to be substituted

• The value to be substituted

For example:

pstmt.setString(1, name);
pstmt.setObject(2, home);
pstmt.setInt(3, id);

After making these substitutions, updateAction() executes the update
statement.

To simplify updateAction(), the substituted values in the example are fixed.
Normally, applications would compute the substituted values or obtain them as
parameters.

Executing a select Statement: the selectAction() Method
The selectAction() method executes a Transact-SQL select statement:

String sql = "select name, home from xmp where id=?";

The where clause has a parameter marker (?) for the row to be selected. Using
the JDBC setInt() method, selectAction() supplies a value for the parameter
marker after preparing the SQL statement:

PreparedStatement pstmt = con.prepareStatement(sql);
pstmt.setInt(1, id);

selectAction() then executes the select statement:

ResultSet rs = pstmt.executeQuery();

Note For SQL statements that return no results, use doSQL() and
updateAction(). They execute SQL statements with the executeUpdate()
method.

 For SQL statements that do return results, use the executeQuery() method,
which returns a JDBC ResultSet object.

The ResultSet object is similar to a SQL cursor. Initially, it is positioned before
the first row of results. Each call of the next() method advances the ResultSet
object to the next row, until there are no more rows.

CHAPTER 4 Data Access Using JDBC

75

selectAction() requires that the ResultSet object have exactly one row. The
selecter() method invokes the next method, and checks for the case where
ResultSet has no rows or more than one row.

 if (rs.next()) {
 name = rs.getString(1);
 home = (Address)rs.getObject(2);
 if (rs.next()) {
 throw new Exception("Error: Select returned multiple rows");
 } else { // No action
 }
 } else { throw new Exception("Error: Select returned no rows");
 }

In the above code, the call of methods getString() and getObject() retrieve
the two columns of the first row of the result set. The expression
“(Address)rs.getObject(2)” retrieves the second column as a Java object, and
then coerces that object to the Address class. If the returned object is not an
Address, then an exception is raised.

selectAction() retrieves a single row and checks for the cases of no rows or
more than one row. An application that processes a multiple row ResultSet
would simply loop on the calls of the next() method, and process each row as
for a single row.

Calling a SQL Stored Procedure: the callAction() Method
The callAction() method calls the stored procedure inout:

create proc inout @id int, @newname varchar(50), @newhome Address,
 @oldname varchar(50) output, @oldhome Address output as

 select @oldname = name, @oldhome = home from xmp where id=@id
 update xmp set name=@newname, home = @newhome where id=@id

This procedure has three input parameters (@id, @newname, and @newhome)
and two output parameters (@oldname and @oldhome). callAction() sets the
name and home columns of the row of table xmp with the ID value of @id to
the values @newname and @newhome, and returns the former values of those
columns in the output parameters @oldname and @oldhome.

The inout procedure illustrates how to supply input and output parameters in a
JDBC call.

callAction() executes the following call statement, which prepares the call
statement:

Using JDBC to Access Data

76

CallableStatement cs = con.prepareCall("{call inout (?, ?, ?, ?, ?)}");

All of the parameters of the call are specified as parameter markers (?).

callAction() supplies values for the input parameters using JDBC setInt(),
setString(), and setObject() methods that were used in the doSQL(),
updatAction(), and selectAction() methods:

 cs.setInt(1, id);
 cs.setString(2, newName);
 cs.setObject(3, newHome);

These set methods are not suitable for the output parameters. Before executing
the call statement, callAction() specifies the datatypes expected of the output
parameters using the JDBC registerOutParameter() method:

 cs.registerOutParameter(4, java.sql.Types.VARCHAR);
 cs.registerOutParameter(5,com.sybase.jdbc.Param.JAVA_OBJECT);

callAction() then executes the call statement and obtains the output values
using the same getString() and getObject() methods that the selectAction()
method used:

 int res = cs.executeUpdate();
 String oldName = cs.getString(4);
 Address oldHome = (Address)cs.getObject(5);

CHAPTER 4 Data Access Using JDBC

77

The JDBCExamples Class
// An example class illustrating the use of JDBC facilities
// with the Java in Adaptive Server feature.
//
// The methods of this class perform a range of SQL operations.
// These methods can be invoked either from a Java client,
// using the main method, or from the SQL server, using
// the internalMain method.
//
import java.sql.*; // JDBC
public class JDBCExamples {
{

The main() Method
// The main method, to be called from a client-side command line
//
 public static void main(String args[]) {
 if (args.length!=2) {
 System.out.println("\n Usage: "
 + "java ExternalConnect server-name:port-number
 action ");
 System.out.println(" The action is connect, createtable,
 " + "createproc, drop, "
 + "insert, select, update, or call \n");
 return;
 }
 try{
 String server = args[0];
 String action = args[1].toLowerCase();
 Connection con = connecter(server);
 String workString = doAction(action, con, client);
 System.out.println("\n" + workString + "\n");
 } catch (Exception e) {
 System.out.println("\n Exception: ");
 e.printStackTrace();
 }
 }

The internalMain() Method
// A JDBCExamples method equivalent to ’main’,

The JDBCExamples Class

78

// to be called from SQL or Java in the server

 public static String internalMain(String action) {
 try {
 Connection con = connecter("default");
 String workString = doAction(action, con, server);
 return workString;
 } catch (Exception e) {
 if (e.getMessage().equals(null)) {
 return "Exc: " + e.toString();
 } else {
 return "Exc - " + e.getMessage();
 }
 }
 }

The connecter() Method
// A JDBCExamples method to get a connection.
// It can be called from the server with argument ’default’,
// or from a client, with an argument that is the server name.

public static Connection connecter(String server)
 throws Exception, SQLException, ClassNotFoundException {

 String forName="";
 String url="";

 if (server=="default") { // server connection to current server
 forName = "sybase.asejdbc.ASEDriver";
 url = "jdbc:default:connection";
 } else if (server!="default") { //client connection to server
 forName= "com.sybase.jdbc.SybDriver";
 url = "jdbc:sybase:Tds:"+ server;
 }

 String user = "sa";
 String password = "";

 // Load the driver
 Class.forName(forName);
 // Get a connection
 Connection con = DriverManager.getConnection(url,
 user, password);
 return con;

CHAPTER 4 Data Access Using JDBC

79

 }

The doAction() Method
// A JDBCExamples method to route to the ’action’ to be performed

 public static String doAction(String action, Connection con,
 String locale)
 throws Exception {

 String createProcScript =
 " create proc inout @id int, @newname varchar(50),
 @newhome Address, "
 + " @oldname varchar(50) output, @oldhome Address
 output as "
 + " select @oldname = name, @oldhome = home from xmp
 where id=@id "
 + " update xmp set name=@newname, home = @newhome
 where id=@id ";
 String createTableScript =
 " create table xmp (id int, name varchar(50),
 home Address)" ;

 String dropTableScript = "drop table xmp ";
 String dropProcScript = "drop proc inout ";

 String insertScript = "insert into xmp "
 + "values (1, ’Joe Smith’, new Address(’987 Shore’,
 ’12345’))";

 String workString = "Action (" + action +) ;
 if (action.equals("connect")) {
 workString += "performed";
 } else if (action.equals("createtable")) {
 workString += doSQL(con, createTableScript);
 } else if (action.equals("createproc")) {
 if (locale.equals(server)) {
 throw new exception (CreateProc cannot be performed
 in the server);
 } else {
 workString += doSQL(con, createProcScript);
 }
 } else if (action.equals("droptable")) {
 workString += doSQL(con, dropTableScript);
 } else if (action.equals("dropproc")) {
 if (locale.equals(server)) {

The JDBCExamples Class

80

 throw new exception (CreateProc cannot be performed
 in the server);
 } else {
 workString += doSQL(con, dropProcScript);
 }
 } else if (action.equals("insert")) {
 workString += doSQL(con, insertScript);
 } else if (action.equals("update")) {
 workString += updateAction(con);
 } else if (action.equals("select")) {
 workString += selectAction(con);
 } else if (action.equals("call")) {
 workString += callAction(con);
 } else { return "Invalid action: " + action ;
 }
 return workString;
 }

The doSQL() Method
// A JDBCExamples method to execute an SQL statement.

 public static String doSQL (Connection con, String action)
 throws Exception {

 Statement stmt = con.createStatement();
 int res = stmt.executeUpdate(action);
 return "performed";
 }

The updateAction() Method
// A method that updates a certain row of the ’xmp’ table.
// This method illustrates prepared statements and parameter markers.

 public static String updateAction(Connection con)
 throws Exception {

 String sql = "update xmp set name = ?, home = ? where id = ?";
 int id=1;
 Address home = new Address("123 Main", "98765");
 String name = "Sam Brown";
 PreparedStatement pstmt = con.prepareStatement(sql);

CHAPTER 4 Data Access Using JDBC

81

 pstmt.setString(1, name);
 pstmt.setObject(2, home);
 pstmt.setInt(3, id);
 int res = pstmt.executeUpdate();
 return "performed";
 }

The selectAction() Method
// A JDBCExamples method to retrieve a certain row
// of the ’xmp’ table.
// This method illustrates prepared statements, parameter markers,
// and result sets.

 public static String selectAction(Connection con)
 throws Exception {

 String sql = "select name, home from xmp where id=?";
 int id=1;
 Address home = null;
 String name = "";
 String street = "";
 String zip = "";
 PreparedStatement pstmt = con.prepareStatement(sql);
 pstmt.setInt(1, id);
 ResultSet rs = pstmt.executeQuery();
 if (rs.next()) {
 name = rs.getString(1);
 home = (Address)rs.getObject(2);
 if (rs.next()) {
 throw new Exception("Error: Select returned
 multiple rows");
 } else { // No action
 }
 } else { throw new Exception("Error: Select returned no rows");
 }
 return "- Row with id=1: name("+ name +)
 + " street(" + home.street +) zip("+ home.zip +);

The callAction() Method
// A JDBCExamples method to call a stored procedure,
// passing input and output parameters of datatype String

The JDBCExamples Class

82

 // and Address.
 // This method illustrates callable statements, parameter markers,
 // and result sets.

 public static String callAction(Connection con)
 throws Exception {
 CallableStatement cs = con.prepareCall("{call inout
 (?, ?, ?, ?, ?)}");
 int id = 1;
 String newName = "Frank Farr";
 Address newHome = new Address("123 Farr Lane", "87654");
 cs.setInt(1, id);
 cs.setString(2, newName);
 cs.setObject(3, newHome);
 cs.registerOutParameter(4, java.sql.Types.VARCHAR);
 cs.registerOutParameter(5, com.sybase.jdbc.Param.JAVA_OBJECT);
 int res = cs.executeUpdate();
 String oldName = cs.getString(4);
 Address oldHome = (Address)cs.getObject(5);
 return "- Old values of row with id=1: name("+oldName+)
 street(" + oldHome.street + ") zip("+ oldHome.zip +);
 }
}

83

C H A P T E R 5 XML in the Database

This chapter uses examples to describe how you can use Java tools to
access Extensible Markup Language (XML) documents in Adaptive
Server.

These topics are discussed:

Name Page

Introduction 84

An Overview of XML 86

Using XML in the Adaptive Server Database 92

A Simple Example for a Specific Result Set 97

A Customizable Example for Different Result Sets 112

Introduction

84

Introduction
Like Hypertext Markup Language (HTML), XML is a markup language and a
subset of Standardized General Markup Language (SGML). XML, however, is
more complete and disciplined, and it allows you to define your own
application-oriented markup tags. These properties make XML particularly
suitable for data interchange.

You can generate XML-formatted documents from data stored in Adaptive
Server and, conversely, store XML documents, and data extracted from them,
in Adaptive Server. Many of the XML tools needed to generate and process
XML documents are written in Java. Java in Adaptive Server provides a good
base for XML-SQL applications using both universal and application-specific
tools.

This chapter first provides a general discussion of XML and how you can use
XML in the Adaptive Server database. It then presents a series of examples that
you can use as guidelines for using XML in your Adaptive Server database.

Source Code and Javadoc
The source code for the Java classes described in this chapter is available in
$SYBASE/$SYBASE_ASE/sample/JavaSql (UNIX) or %SYBASE%\Ase-
12_0\sample\JavaSql (Windows NT), which also contains Javadoc-generated
HTML pages with the specifications of the referenced packages, classes, and
methods.

References
This chapter presents a overview of XML. For detailed information, refer to
these Web documents.

• World Wide Web Consortium (W3C), at http://www.w3.org

• W3C, Document Object Model (DOM), at http://www.w3.org/DOM/

• W3C, Extensible Markup Language (XML™), at
http://www.w3.org/XML/

• W3C, Extensible Stylesheet Language (XSL), at
http://www.w3.org/TR/WD-xsl/

CHAPTER 5 XML in the Database

85

• Sun Microsystems, Inc, Java™ Project X Technology Release 1, at
http://developer.java.sun.com/developer/earlyAccess/xml/index.ht
ml

• Megginson Technologies, SAX 1.0: The Simple API for XML, at
http://www.megginson.com/SAX/

An Overview of XML

86

An Overview of XML
XML is a markup language and subset of SGML. It was created to provide
functionality that goes beyond that of HTML for Web publishing and
distributed document processing.

XML is less complex than SGML, but more complex and flexible than HTML.
Although XML and HTML can usually be read by the same browsers and
processors, XML has characteristics that make it better able to share
documents:

• XML documents possess a strict phrase structure that makes it easy to find
and access data. For example, opening tags of all elements must have a
corresponding closing tag, for example, <p>A paragraph.<\p>.

• XML lets you develop and use tags that distinguish different types of data,
for example, customer numbers or item numbers.

• XML lets you create an application-specific document type, which makes
it possible to distinguish one kind of document from another.

• XML documents allow different views of the XML data. XML documents
contain only markup and content; they do not contain formatting
instructions. Formatting instructions are normally provided on the client
using Extensible Style Language (XSL) specifications.

A Sample XML Document
The sample Order document is designed for a purchase order application.
Customers submit orders, which are identified by a date and a customer ID.
Each order item has an item ID, an item name, a quantity, and a unit
designation.

It might display on screen like this:

CHAPTER 5 XML in the Database

87

ORDER

Date: July 4, 1999

Customer ID: 123

Customer Name: Acme Alpha

Items:

A possible XML representation of the data for the order is:

<?xml version="1.0"?>
<Order>
 <Date>1999/07/04</Date>
 <CustomerId>123</CustomerId>
 <CustomerName>Acme Alpha</CustomerName>
 <Item>
 <ItemId> 987</ItemId>
 <ItemName>Coupler</ItemName>
 <Quantity>5</Quantity>
 </Item>
<Item>
 <ItemId>654</ItemId>
 <ItemName>Connector</ItemName>
 <Quantity unit="12">3</Quantity>
 </Item>
<Item>
 <ItemId>579</ItemId>
 <ItemName>Clasp</ItemName>
 <Quantity>1</Quantity>
 </Item>
</Order>

The XML document for the order data consists of these parts:

• The XML declaration, <?xml version=“1.0”?>, which identifies Order as
an XML document.

XML documents are represented as character data. In each document, the
character encoding (character set) is specified, either explicitly or
implicitly. To explicitly specify the character set, include it in the XML
declaration. For example:

Item ID Item Name Quantity

987 Coupler 5

654 Connector 3 dozen

579 Clasp 1

An Overview of XML

88

<?xml version=”1.0” encoding=”ISO-8859-1”>

If you do not include the character set in the XML declaration, the default,
which is UTF8, is used. For example:

<?xml version=”1.0”?>

Note When the default character sets of the client and server differ,
Adaptive Server bypasses normal character set translations so that the
declared character set continues to match the actual character set. See
“Character Sets and XML Data” on page 91.

• User-created element tags such as <Order>…</Order>,
<CustomerId>…</CustomerId>, <Item>….</Item>. In XML
documents, all opening tags must have a corresponding closing tag.

• Text data such as “Acme Alpha,” “Coupler,” and “579.”

• Attributes embedded in element tags such as <Quantity unit = “12”>. This
kind of coding allows you the flexibility to customize elements.

A document with these parts, and with the element tags strictly nested, is called
a well-formed XML document. Note that in the example above element tags
describe the data they contain, and the document contains no formatting
instructions.

XML Document Types
A Document Type Definition (DTD) defines the structure of a class of XML
documents, making it possible to distinguish between classes. A DTD is a list
of element and attribute definitions unique to a class. Once you have set up a
DTD, you can reference a DTD in another document or embed the DTD in the
XML document.

Here is another example of an XML document:

<?xml version="1.0"?>
 <Info>
 <OneTag>1999/07/04</OneTag>
 <AnotherTag>123</AnotherTag>
 <LastTag>Acme Alpha</LastTag>
 <Thing>
 <ThingId> 987</ThingId>
 <ThingName>Coupler</ThingName>
 <Amount>5</Amount>

CHAPTER 5 XML in the Database

89

 <Thing/>
 <Thing>
 <ThingId>654</ThingI
 <ThingName>Connecter</ThingNam
 </Thing>
<Thing>
 <ThingId>579</ThingId>
 <ThingName>Clasp</ThingName>
 <Amount>1</Renew>
 </Thing>
 </Info>

This example, called Info, is a well-formed document and has the same
structure and data as the XML Order document. Nonetheless, it would not be
recognized by a processor designed for Order documents because each have
different DTDs.

The DTD for XML Order documents is:

<!ELEMENT Order (Date, CustomerId, CustomerName,
 Item+)>
 <!ELEMENT Date (#PCDATA)>
 <!ELEMENT CustomerId (#PCDATA)>
 <!ELEMENT CustomerName (#PCDATA)>
 <!ELEMENT Item (ItemId, ItemName, Quantity)>
 <!ELEMENT ItemId (#PCDATA)>
 <!ELEMENT ItemName (#PCDATA)>
 <!ELEMENT Quantity (#PCDATA)>
 <!ATTLIST Quantity units CDATA #IMPLIED>

This DTD specifies that:

• An order consists of these required elements: a date, a customer ID, a
customer name, and one or more items. “+” indicates one or more items.
These items are required. A question mark indicates an optional element
(for example, “CustomerName?”). An asterisk indicates that an element
can occur zero or more times (for example, “Item*”).

• Elements defined by “(#PCDATA)” are character text.

• The “<ATTLIST…>” definition specifies that quantity elements have a
“units” attribute; the “#IMPLIED” specification indicates that the “units”
attribute is optional.

The character text of XML documents is not constrained. For example, there is
no way to specify that the text of a quantity element should be numeric, and
thus the following would be valid:

<Quantity unit=”Baker’s dozen”>three</Quantity>
<Quantity unit=”six packs”>plenty</Quantity>

An Overview of XML

90

Restrictions on the text of elements are handled by applications that process
XML data.

An XML’s DTD must follow the <?xml version="1.0"?> instruction. You can
either include the DTD within your XML document, or you can reference an
external DTD.

• To reference a DTD externally, use something like this:

<?xml version="1.0"?>
 <!DOCTYPE Order SYSTEM "Order.dtd”>
 <Order>
…
 </Order>

• Here’s how an embedded DTD might look:

<?xml version="1.0"?>
 <!DOCTYPE Order [
 <!ELEMENT Order (Date, CustomerId, CustomerName,
 Item+)>
 <!ELEMENT Date (#PCDATA)
 <!ELEMENT CustomerId (#PCDATA)>
 <!ELEMENT CustomerName (#PCDATA)>
 <!ELEMENT Item (ItemId, ItemName, Quantity)>
 <!ELEMENT ItemId (#PCDATA)>
 <!ELEMENT ItemName (#PCDATA)>
 <!ELEMENT Quantity (#PCDATA)>
 <!ATTLIST Quantity units CDATA #IMPLIED>

]>
 <Order>
 <Date>1999/07/04</Date>
 <CustomerId>123</CustomerId>
 <CustomerName>Acme Alpha</CustomerName>

 <Item>
 …
 </Item>
 </Order>

DTDs are not required for XML documents. However, a valid XML
document has a DTD and conforms to that DTD.

XSL: Formatting XML Information
You can use XSL to format XML documents. XSL specifications (stylesheets)
consist of a set of rules that define the transformation of an XML document into
either an HTML document or a different XML document:

CHAPTER 5 XML in the Database

91

• XSL specifications that transform an XML document into HTML can
specify normal HTML formatting details in the output HTML.

• XSL specifications that transform an XML document into another XML
document can map the input XML document to an output XML document
with different element names and phrase structure.

You can create your own stylesheets for the display of particular classes for
particular applications. XSL is normally used with presentation applications
rather than with applications for data interchange or storage.

Character Sets and XML Data
If the declared character sets of your client and server differ, you must take care
when declaring the character set of your XML documents.

Every XML document has a character set value. If that encoding is not declared
in the XML declaration, the default value of UTF8 is assumed. The XML
processor, when parsing the XML data, reads this value and handles the data
accordingly. When the default character set of the client and server differ,
Adaptive Server bypasses normal character set conversions to ensure that the
declared character set and the actual character set remain the same.

• If you introduce an XML document into the database by providing the
complete text in the values clause of an insert statement, Adaptive Server
translates the entire SQL statement into the server’s character set before
processing the insertion. This is the way Adaptive Server normally
translates character text, and you must make sure that the declared
character set of the XML document matches that of the server.

• If you introduce an XML document into the database using writetext or
Open Client CT-Library or Open Client DB-Library programs, Adaptive
Server recognizes the XML document from the XML declaration and does
not translate the character set to that of the server.

• If you read an XML document from the database, Adaptive Server does
not translate the character set of the data to that of the client, thus
preserving the integrity of the XML document.

Using XML in the Adaptive Server Database

92

Using XML in the Adaptive Server Database
To use XML documents for data interchange in Adaptive Server, you must be
able to store XML documents or the data that they contain in the database. To
determine how best to accomplish this, consider the following:

• Mapping and storage: What sort of correspondence between XML
documents and SQL data is most suitable for your system?

• Client or Server Considerations: Should the mapping take place on the
client or the server?

• Accessing XML in SQL: How do you want to access the elements of an
XML document in SQL?

The rest of this section discusses each of these considerations; the remainder of
the chapter provides these classes and methods you can use with XML:

• A simple example to illustrate the basics of data storage and exchange of
XML documents

• A generalized example that you can customize for your own XML
documents

Mapping and Storage
There are three basic ways to store XML data in Adaptive Server: element
storage, document storage, or hybrid storage, which is a mixture of both.

• Element storage – In this method, you extract data elements from an XML
document and store them as data rows and columns in Adaptive Server.

For example, using the XML Order document, you can create SQL tables
with columns for the individual elements of an order: Date, CustomerId,
CustomerName, ItemId, ItemName, Quantity, and Units. You can then
manage that data in SQL with normal SQL operations:

• To produce an XML document for Order data contained in SQL,
retrieve the data, and assemble an XML document with it.

• To store an XML document with new Order data, extract the elements
of that document, and update the SQL tables with that data.

• Document storage – In this method, you store an entire XML document in
a single SQL column.

CHAPTER 5 XML in the Database

93

For example, using the Order document, you can create one or more SQL
tables having a column for Order documents. The datatype of that column
could be:

• SQL text, or

• A generic Java class designed for XML documents, or

• A Java class designed specifically for XML Order documents

• Hybrid storage – In this method, you store an XML document in a SQL
column, and also extract some of its data elements into separate columns
for faster and more convenient access.

Again, using the Order example, you can create SQL tables as you would
for document storage, and then include (or later add) one or more columns
to store elements extracted from the Order documents.

Advantages and Disadvantages of Storage Options

Each storage option has advantages and disadvantages. You must choose the
option or options best for your operation.

• If you use element storage, all of the data from the XML document is
available as normal SQL data that you can query and update using SQL
operations. However, element storage has the overhead of assembling and
disassembling the XML documents for interchange.

• Document storage eliminates the need for assembling and disassembling
the data for interchange. However, you need to use Java methods to
reference or update the elements of the XML documents while they are in
SQL, which is slower and less convenient than the direct SQL access of
element storage.

• Hybrid storage balances the advantages of element storage and document
storage, but has the cost and complexity of redundant storage of the
extracted data.

Client or Server Considerations
This chapter describes Java methods for assembling and disassembling an
XML document and referencing or updating its elements. You can execute Java
methods either on the client or on the server, which is a consideration for
element storage and hybrid storage. Document storage involves little or no
processing of the document.

Using XML in the Adaptive Server Database

94

• Element storage – If you map individual elements of an XML document
to SQL data, in most cases, the XML document is larger than the SQL
data. It is generally more efficient to assemble and disassemble the XML
document on the client and transfer only the SQL data between the client
and the server.

• Hybrid storage – If you store both the complete XML document and
extracted elements, then it is generally more efficient to extract the data
from the server, rather than transfer it from the client.

Accessing XML in SQL
This chapter discusses three applications of XML in SQL. These applications
are organized in three layers:

• Transact-SQL statements such as insert, select, and update for
referencing SQL columns and variables that contain XML documents.
These SQL operations use Java classes and methods to manipulate the
XML documents.

• Java classes to contain XML documents and to access and update the
elements of those documents. There is an application-specific class for the
Order document type and a general class for arbitrary SQL result sets.

• An XML parser, which is used by the Java classes to analyze and
manipulate XML documents.

The Java classes that are used in this chapter to demonstrate XML applications
are JXml, OrderXml, and ResultSetXml.

• JXml stores and parses XML. It does not validate XML documents. It is
designed as a base class for subclasses that:

• Validate specific XML document types

• Provide application-oriented methods

OrderXml and ResultSetXml are two such subclasses.

• The OrderXml classes used to illustrate support for an application-specific
XML document type. OrderXml validates Order documents for the Order
DTD. You can use OrderXml methods to reference and update elements of
the Order document.

CHAPTER 5 XML in the Database

95

• ResultSetXml represents SQL result sets. The ResultSetXml constructor
validates the ResultSet document for the ResultSet DTD. ResultSetXml
methods are used to reference and update elements of the ResultSet
document.

The ResultSetXml class illustrates support for a general XML document
type capable of representing arbitrary SQL data.

“The OrderXml Class for Order Documents” on page 97 and “The
ResultSetXml Class for Result Set Documents” on page 116 describe these
classes and their methods and parameters. For Javadoc HTML pages with
detailed specifications for the classes and for source code, refer to
$SYBASE/$SYBASE_ASE/sample/JavaSql (UNIX) or %SYBASE%\Ase-
12_0\sample\JavaSql (Windows NT).

XML Parsers
You can analyze XML documents and extract their data using SQL character-
string operations such as substring, charindex, and patindex. However, it is
more efficient to use Java in SQL and tools written in Java such as XML
parsers.

XML parsers can:

• Check that a document is well-formed and valid.

• Handle character-set issues.

• Generate a Java representation of a document’s parse tree.

• Build or modify a document’s parse tree.

• Generate a document’s text from its parse tree.

Many XML parsers are available with a free license or are in the public
domain. They normally implement two standard interfaces: the Simple API for
XML (SAX) and the Document Object Model (DOM).

• SAX is an interface for parsing. It specifies input sources, character sets,
and routines to handle external references. While parsing, it generates
events so that user routines can process the document incrementally, and
it returns a DOM object that is the parse tree of the document.

• DOM is an interface for the parse tree of an XML document. It provides
facilities for stepping through and assembling a parse tree.

Using XML in the Adaptive Server Database

96

Applications that use the SAX and DOM interfaces are portable across XML
parsers.

CHAPTER 5 XML in the Database

97

A Simple Example for a Specific Result Set
This section provides a simple example that demonstrates how you can store
XML documents or the data that they contain in an Adaptive Server database.

The example in this section, the XML Order document type, is designed for a
specific purchase-order application, and the Java methods created for it assume
a specific set of SQL tables for storing purchase order data.

For a more generalized example, applicable to a range of SQL result sets, see
“A Customizable Example for Different Result Sets” on page 112:

The OrderXml Class for Order Documents
The example in this section uses the OrderXml class and its methods for basic
operations on XML Order documents. The source code and Javadoc
specifications for OrderXml are in $SYBASE/$SYBASE_ASE/sample/JavaSql.

 OrderXml is a subclass of the JXml class, which is specialized for XML Order
documents. The OrderXml constructor validates the document for the Order
DTD. Methods of the OrderXml class support referencing and updating the
elements of the Order document.

• Constructor: OrderXml(String)

Validates that the String argument contains a valid XML Order document,
and then constructs an OrderXml object containing that document. For
example, “doc” is a Java string variable containing an XML Order
document, perhaps one read from a file:

jcs.xml.order.OrderXml ox = new jcs.xml.order.OrderXml(doc);

• Constructor: OrderXml(date, customerId, dtdOption, server)

The parameters are all String.

This method assumes a set of SQL tables containing Order data. The
method uses JDBC to execute a SQL query that retrieves Order data for
the given date and customerId. The method then assembles an XML Order
document with the data.

The server parameter identifies the Adaptive Server on which to execute
the query.

• If you invoke the method in a client environment, specify the server
name.

A Simple Example for a Specific Result Set

98

• If you invoke the method in Adaptive Server (in a SQL statement or
in isql), specify either an empty string or the string
“jdbc:default:connection,” which indicates that the query should be
executed on the current Adaptive Server

The dtdOption parameter indicates whether you want the generated Order
to contain the DTD or to reference it externally.

For example:

jcs.xml.order.OrderXml ox = new OrderXml(“990704”, “123”,
 “external”, “antibes:4000?user=sa”);

• void order2Sql(String ordersTableName, String server)

Extracts the elements of the Order document and stores them in a SQL
table created by the createOrdertable() method. ordersTableName is the
name of the target table. The server parameter is as described for the
OrderXml constructor. For example, if ox is a Java variable of type
OrderXml:

ox.order2Sql(“current_orders”, “antibes:4000?user=sa”);

This call extracts the elements of the Order document contained in ox, and
uses JDBC to insert the extracted elements into rows and columns of the
table named current_orders.

• static void createOrderTable(String ordersTableName, String server)

Creates a SQL table with columns suitable for storing Order data:
customer_id, order_date, item_id, quantity, and unit. ordersTableName is
the name of the new table. The server parameter is as described for the
OrderXml constructor. For example:

jcs.xml.order.OrderXml.createOrderTable
 (“current_orders”, “antibes:4000?user=sa”);

• String getOrderElement(String elementName)

elementName is “Date,” “CustomerId,” or “CustomerName.” The method
returns the text of the element. For example, if ox is a Java variable of type
OrderXml:

String customerId = ox.getOrderElement(“CustomerId”);
String customerName = ox.getOrderElement(“CustomerName”);
String date = ox.getOrderElement(“Date”);

• void setOrderElement(String elementName, String newValue)

CHAPTER 5 XML in the Database

99

elementName is as described for getOrderElement().The method sets that
element to newValue. For example, if ox is a Java variable of type
OrderXml:

ox.setOrderElement(“CustomerName”, “Acme Alpha Consolidated”);
ox.setOrderElement(“CustomerId”, “987a”);
ox.setOrderElement(“Date”, “1999/07/05”);

• String getItemElement(int itemNumber, String elementName)

itemNumber is the index of an item in the order. elementName is “ItemId,”
“ItemName,” or “Quantity.” The method returns the text of the item. For
example, if ox is a Java variable of type OrderXml:

String itemId = ox.getItemElement(2, “ItemId”);
String itemName = ox.getItemElement(2, “ItemName”);
String quantity = ox.getItemElement(2, “Quantity”);

• void setItemElement(int itemNumber, String elementName, String
newValue)

itemNumber and elementName are as described for the getItemElement
method. setItemElement sets the element to newValue. For example, if ox
is a Java variable of type OrderXml:

ox.setItemElement(2, “ItemId”, “44”);
ox.setItemElement(2, “ItemName”, “cord”);
ox.setItemElement(2, “Quantity”, “3”);

• String getItemAttribute(int itemNumber, elementName,
attributeName)

itemNumber and elementName are described as for getItemElement().
elementName and attributeName are both String. attributeName must be
“unit.” The method returns the text of the unit attribute of the item.

Note Since the Order documents currently have only one attribute, the
attributeName parameter is unnecessary. It is included to illustrate the
general case, for example, if ox is a Java variable of type OrderXml:

String itemId = ox.getItemAttribute(2, “unit”);

• void setItemAttribute (int itemNumber, elementName, attributeName,
newValue)

A Simple Example for a Specific Result Set

100

itemNumber, elementName, and attributeName are as described for
getItemAttribute(). elementName, attributeName, and newValue are
String. The method sets the text of the unit attribute of the item to
newValue. For example, if ox is a Java variable of type OrderXml:

ox.setItemAttribute(2, “unit”, “13”);

• void appendItem(newItemId, newItemName, newQuantity, newUnit)

The parameters are all String. The method appends a new item to the
document, with the given element values. For example, if ox is a Java
variable of type OrderXml:

ox.appendItem(“77”, “spacer”, “5”, “12”);

• void deleteItem(int itemNumber)

itemNumber is the index of an item in the order. The method deletes that
item. For example, if ox is a Java variable of type OrderXml:

ox.deleteItem(2);

Creating and Populating SQL Tables for Order Data
In this section we create several tables. These tables are designed to contain
data from XML Order documents, so that we can demonstrate techniques for
element, document, and hybrid data storage.

Tables for Element Storage

The following SQL statements create SQL tables customers, orders, and items,
whose columns correspond with the elements of the XML Order documents.

create table customers
 (customer_id varchar(5) not null unique,
 customer_name varchar(50) not null)

create table orders
 (customer_id varchar(5) not null,
 order_date datetime not null,
 item_id varchar(5) not null,
 quantity int not null,
 unit smallint default 1)

create table items
 (item_id varchar(5) unique,
 item_name varchar(20))

CHAPTER 5 XML in the Database

101

These tables need not to have been specifically created to accommodate XML
Order documents.

The following SQL statements populate the tables with the data in the example
XML Order document (see “A Sample XML Document” on page 86):

insert into customers values("123", "Acme Alpha")

insert into orders values ("123", "1999/05/07",
 "987", 5, 1)

insert into orders values ("123", "1999/05/07",
 "654", 3, 12)

insert into orders values ("123", "1999/05/07",
 "579", 1, 1)

insert into items values ("987", "Widget")

insert into items values ("654",
 "Medium connecter")

insert into items values ("579",
 "Type 3 clasp")

Use select to retrieve the Order data from the tables:

select order_date as Date, c.customer_id as CustomerId,
 customer_name as CustomerName,
 o.item_id as ItemId, i.item_name as ItemName,
 quantity as Quantity, o.unit as unit
 from customers c, orders o, items i
 where c.customer_id=o.customer_id and
o.item_id=i.item_id

Tables for Document and Hybrid Storage

The following SQL statement creates a SQL table for storing complete XML
Order documents, either with or without extracted elements (for hybrid
storage).

create table order_docs
 (id char(10) unique,
 customer_id varchar(5) null, -- For an
 extracted “CustomerId” element

Date CustomerId CustomerName ItemId ItemName Quantity Unit

July 4 1999 123 Acme Alpha 987 Coupler 5 1

July 4 1999 123 Acme Alpha 654 Connector 3 12

July 4 1999 123 Acme Alpha 579 Clasp 1 1

A Simple Example for a Specific Result Set

102

 order_doc jcs.xml.order.OrderXml)

Using the Element Storage Technique
This section describes the element storage technique for bridging XML and
SQL.

• “Composing Order Documents from SQL Data” on page 102 discusses the
composition of an XML Order document from SQL data.

• “Decomposing Data from an XML Order into SQL” on page 103
discusses the decomposition of an XML Order document to SQL data.

Composing Order Documents from SQL Data

In this example, Java methods generate an XML Order document from the
SQL data in the tables created in “Creating and Populating SQL Tables for
Order Data” on page 100.

A constructor method of the OrderXml class maps the data. An call of that
constructor might be:

new jcs.xml.order.OrderXml("990704", "123",
 “external”, "antibes:4000?user=sa");

This constructor method uses internal JDBC operations to:

• Execute a SQL query for the Order data

• Generate an XML Order document with the data

• Return the OrderXml object that contains the Order document

You can invoke the OrderXml constructor in the client or the Adaptive Server.

• If you invoke the OrderXml constructor in the client, the JDBC operations
that it performs use jConnect to connect to the Adaptive Server and
perform the SQL query. It then reads the result set of that query and
generates the Order document on the client.

• If you invoke the OrderXml constructor in the Adaptive Server, the JDBC
operations that it performs use the native JDBC driver to connect to the
current Adaptive Server and perform the SQL query. It then reads the
result set and generates the Order document in the Adaptive Server.

CHAPTER 5 XML in the Database

103

Generating an Order on the Client

Designed to be implemented on the client, main() invokes the constructor of
the OrderXml class to generate an XML Order from the SQL data. That
constructor executes a select for the given date and customer id, and assembles
an XML Order document from the result.

import java.io.*;
import jcs.util.*;
public class Sql2OrderClient {
 public static void main (String args[]) {
 try{
 jcs.xml.order.Order order =
 new jcs.xml.order.OrderXml("990704", "123",
 “external”, "antibes:4000?user=sa");
 FileUtil.string2File("Order-sql2Order.xml",
 order.getXmlText());
 } catch (Exception e) {
 System.out.println("Exception:");
 e.printStackTrace();
 }
 }
 }

Generating an Order on the Server

Designed for the server environment, the following SQL script invokes the
constructor of the OrderXml class to generate an XML Order from the SQL
data:

declare @order jcs.xml.order.OrderXml
select @order =
 new jcs.xml.order.OrderXml('990704', '123',
 'external', '')
insert into order_docs (id, order_doc) values(“3”,
 @order)

Decomposing Data from an XML Order into SQL

In this section, you extract elements from an XML Order document and store
them in the rows and columns of the SQL Orders tables. The examples
illustrate this procedure in both server and client environments.

You decompose the elements using the Java method order2Sql() of the
OrderXml class. Assume that xmlOrder is a Java variable of type OrderXml:

xmlOrder.order2Sql(“orders_received”, “antibes:4000?user=sa”);

A Simple Example for a Specific Result Set

104

The order2Sql() call extracts the elements of the XML Order document
contained in variable xmlOrder, and then uses JDBC operations to insert that
data into the SQL table orders_received. You can call this method on the client
or on Adaptive Server:

• Invoked from the client, order2Sql() extracts the elements of the XML
Order document in the client, uses jConnect to connect to the Adaptive
Server, and then uses Transact-SQL insert to place the extracted data into
the table.

• Invoked from the server, order2Sql() extracts the elements of the XML
Order document in the Adaptive Server, uses the native JDBC driver to
connect to the current Adaptive Server, and then use Transact-SQL insert
to place the extracted data into the table.

Decomposing the XML Document on the Client

Invoked from the client, the main() method of the Order2SqlClient class
creates a table named orders_received with columns suitable for Order data. It
then extracts the elements of the XML Order contained in the file Order.xml
into rows and columns of orders_received. It performs these actions with calls
to the static method OrderXml.createOrderTable() and the instance method
order2Sql().

import jcs.util.*;
import jcs.xml.order.*;
import java.io.*;
import java.sql.*;
import java.util.*;
public class Order2SqlClient {
 public static void main (String args[]) {
 try{
 String xmlOrder =
 FileUtil.file2String("order.xml");
 OrderXml.createOrderTable("orders_received",
 "antibes:4000?user=sa");
 xmlOrder.order2Sql("orders_received",
 "antibes:4000?user=sa");
 } catch (Exception e) {
 System.out.println("Exception:");
 e.printStackTrace();
 }
 }
 }

CHAPTER 5 XML in the Database

105

Decomposing the XML Document on the Server

Invoked from the server, the following SQL script invokes the OrderXml
constructor to generate an XML Order document from the SQL tables, and then
invokes the method OX.sql2Order(), which extracts the Order data from the
generated XML and inserts it into the orders_received table.

declare @xmlorder OrderXml
select @xmlorder = new OrderXml(’19990704’, ’123’,
 ’external’, ’’)
select @xmlorder>>order2Sql(’orders_received’, ’’)

Using the Document Storage Technique
When using the document storage technique, you store a complete XML
document in a single SQL column.This approach avoids the cost of mapping
the data between SQL and XML when documents are stored and retrieved, but
access to the stored elements can be slow and inconvenient.

Storing XML Order Documents in SQL Columns

This section provides examples of document storage from the client and from
the server.

Inserting an Order Document from a Client File

The following command-line call is representative of how you can insert XML
data into Adaptive Server from a client file. It copies the contents of the
Order.xml file (using the –I parameter) to the Adaptive Server and executes the
SQL script (using the –Q parameter) using the contents of Order.xml as the
value of the question-mark (?) parameter.

java jcs.util.FileUtil -A putstring -I "Order.xml" \
 -Q "insert into order_docs (id, order_doc) \
 values (‘1’, new jcs.xml.order.OrderXml(?)) " \
 –S "antibes:4000?user=sa"

Note The constructor invocation new jcs.xml.order.OrderXml(?) validates the
XML Order document.

A Simple Example for a Specific Result Set

106

Inserting a Generated Order Document on the Server

Executed on the server, the following SQL command generates an XML Order
document from SQL data, and immediately inserts the generated XML
document into the column of the order_docs table.

insert into order_docs (ID, order_doc)
 select “2”, new jcs.xml.order.OrderXml("990704", "123",
 "external", "")

Accessing the Elements of Stored XML Order Documents

We have created a table named order_docs, with a column named order_doc.
The datatype of the order_doc column is OrderXml, which is a Java class that
contains an XML Order document.

The OrderXml class contains several instance methods that let you reference
and update elements of the XML Order document. They are described in “The
OrderXml Class for Order Documents” on page 97. This section uses these
methods to update the Order document.

<?xml version="1.0"?>
 <!DOCTYPE Order SYSTEM "Order.dtd">
 <Order>
 <Date>1999/07/04</Date>
 <CustomerId>123</CustomerId>
 <CustomerName>Acme Alpha</CustomerName>
<Item>
 <ItemId> 987</ItemId>
 <ItemName>Coupler</ItemName>
 <Quantity>5</Quantity>
 </Item>
<Item>
 <ItemId>654</ItemId>
 <ItemName>Connecter</ItemName>
 <Quantity unit="12">3</Quantity>
 </Item>
<Item>
 <ItemId>579</ItemId>
 <ItemName>Clasp</ItemName>
 <Quantity>1</Quantity>
 </Item>
 </Order>

Each XML Order document has exactly one Date, CustomerId, and
CustomerName, and zero or more Items, each of which has an ItemId,
ItemName, and Quantity.

CHAPTER 5 XML in the Database

107

Client Access to Order Elements

The main() method of the OrderElements class is executed on the client. It
reads the Order.xml file into a local variable, and constructs an OrderXml
document from it. The method then extracts the “header” elements (Date,
CustomerId, andCustomerName) and the elements of the first Item of the
Order, prints those elements, and finally updates those elements of the Order
with new values.

import java.io.*;
import jcs.util.*;
public class OrderElements {
 public static void main (String[] args) {
 try{

String xml = FileUtil.file2String("Order.xml");
 jcs.xml.order.OrderXml ox =
 new jcs.xml.order.OrderXml(xml);

// Get the header elements
 String cname = ox.getOrderElement("CustomerName");
 String cid = ox.getOrderElement("CustomerId");
 String date = ox.getOrderElement("Date");

// Get the elements for item 1 (numbering from 0)
 String iName1 = ox.getItemElement(1, "ItemName");
 String iId1 = ox.getItemElement(1, "ItemId");
 String iQ1 = ox.getItemElement(1, "Quantity");
 String iU = ox.getItemAttribute(1, "Quantity", "unit");
 System.out.println("\nBEFORE UPDATE: ")
 System.out.println("\n "+date+ " "+ cname + " " +
 cid);
 System.out.println("\n "+ iName1+" "+iId1+" "
 + iQ1 + " " + iU + "\n");

// Set the header elements
 ox.setOrderElement("CustomerName", "Best Bakery"
 ox.setOrderElement("CustomerId", "531");
 ox.setOrderElement("Date", "1999/07/31");

// Set the elements for item 1 (numbering from 0)
 ox.setItemElement(1, "ItemName", "Flange");
 ox.setItemElement(1, "ItemId", "777");
 ox.setItemElement(1, "Quantity","3");
 ox.setItemAttribute(1, "Quantity", "unit", "13");

//Get the updated header elements
 cname = ox.getOrderElement("CustomerName");
 cid = ox.getOrderElement("CustomerId");
 date = ox.getOrderElement("Date");

A Simple Example for a Specific Result Set

108

// Get the updated elements for item 1
 (numbering from 0)
 iName1 = ox.getItemElement(1, "ItemName");
 iId1 = ox.getItemElement(1, "ItemId");
 iQ1 = ox.getItemElement(1, "Quantity");
 iU = ox.getItemAttribute(1, "Quantity", "unit");

System.out.println("\nAFTER UPDATE: ");
 System.out.println("\n "+date+ " "+ cname + " " +
 cid);
 System.out.println("\n "+ iName1+" "+iId1+" "
 + iQ1 + " " + iU + "\n");

//Copy the updated document to another file
 FileUtil.string2File("Order-updated.xml",
 ox.getXmlText())

} catch (Exception e) {
 System.out.println("Exception:");
 e.printStackTrace();
 }
 }
 }

After implementing the methods in OrderElements, the Order document
stored in the file Order-updated.xml is:

<?xml version="1.0"?>
 <!DOCTYPE Order SYSTEM ’Order.dtd’>
 <Order>
 <Date>1999/07/31</Date>
 <CustomerId>531</CustomerId>
 <CustomerName>Best Bakery</CustomerName>
 <Item>
 <ItemId> 987</ItemId>
 <ItemName>Coupler</ItemName>
 <Quantity>5</Quantity>
 </Item>
 <Item>
 <ItemId>777</ItemId>
 <ItemName>Flange</ItemName>
 <Quantity unit="13">3</Quantity>
 </Item>
 <Item>
 <ItemId>579</ItemId
 <ItemName>Clasp</ItemName
 <Quantity>1</Quantity>
 </Item>

CHAPTER 5 XML in the Database

109

 </Order>

Server Access to Order Elements

The preceding example showed uses of get and set methods in a client
environment. You can also call those methods in SQL statements in the server:

select order_doc>>getOrderElement("CustomerId"),
 order_doc>>getOrderElement("CustomerName"),
 order_doc>>getOrderElement("Date")
 from order_docs

select order_doc>>getItemElement(1, "ItemId"),
 order_doc>>getItemElement(1, "ItemName"),
 order_doc>>getItemElement(1, "Quantity"),
 order_doc>>getItemAttribute(1, "Quantity", "unit")
 from order_docs

update order_docs
 set order_doc = order_doc>>setItemElement(1, "ItemName",
 "Wrench")

update order_docs
 set order_doc = order_doc>>setItemElement(2, "ItemId", "967")

select order_doc>>getItemElement(1, "ItemName"),
 order_doc>>getItemElement(2, "ItemId")
 from order_docs

update order_docs
 set order_doc = order_doc>>setItemAttribute(2, "Quantity",
 "unit", "6")

select order_doc>>getItemAttribute(2, "Quantity", "unit")
 from order_docs

Appending and Deleting Items in the XML Document

The Order class provides methods for adding and removing items from the
Order document.

You can append a new item to the Order document with the appendItem()
method, whose parameters specify ItemId, ItemName, Quantity, and units for
the new item:

update order_docs
 set order_doc = order_doc>>appendItem("864",
 "Bracket", "3","12")

A Simple Example for a Specific Result Set

110

appendItem() is a void method that modifies the instance. When you invoke
such a method in an update statement, you reference it as shown, as if it were
an Order-valued method that returns the updated item.

You delete an existing item from the Order document using deleteItem(). The
deleteItem() parameter specifies the number of the item to be deleted. The
numbering begins with zero, so the following command deletes the second
item from the specified row.

update order_docs
 set order_doc = order_doc>>deleteItem(1)
 where id = “1”

Using the Hybrid Storage Technique
In the hybrid storage technique, you store the complete XML document in a
SQL column and, at the same time, store elements of that document in separate
columns. This technique often balances the advantages and disadvantages of
element and document storage.

“Using the Document Storage Technique” on page 105 demonstrates how to
store the entire XML Order document in the single column
order_docs.order_doc. Using document storage, you must reference and
access the CustomerId element in this way:

select order_doc>>getOrderElement(“CustomerID”) from order_docs
 where order_doc>>getOrderElement(“CustomerID”) > “222”

To access CustomerId more quickly and conveniently than with the method
call, but without first decomposing the Order into SQL rows and columns:

1 Add a column to the order_docs table for the customer_id:

alter table order_docs
 add customer_id varchar(5) null

2 Update that new column with extracted customerId values.

update order_docs
 set customer_id =
 order_doc>>getOrderElement("CustomerId")

3 Now, you can reference CustomerId values directly:

select customer_id from order_docs where
 customer_id > “222”

CHAPTER 5 XML in the Database

111

You can also define an index on the column.

Note This technique does not synchronize the extracted customer_id column
with the CustomerId element of the order_doc column if you update either
value.

A Customizable Example for Different Result Sets

112

A Customizable Example for Different Result Sets
This section demonstrates how you can store XML documents or the data that
they contain in an Adaptive Server database using the ResultSet class and its
methods for handling result sets. You can customize the ResultSet class for
your database application.

Contrast the ResultSet document type and the Order document type:

• The Order document type is a simplified example designed for a specific
purchase-order application, and its Java methods are designed for a
specific set of SQL tables for purchase order data. See “A Simple Example
for a Specific Result Set” on page 97.

• The ResultSet document type is designed to accommodate many kinds of
SQL result sets, and the Java methods designed for it include parameters
to accommodate different kinds of SQL queries.

For this example, you create and work with XML ResultSet documents that
contain the same data as the XML Order documents.

First, create the orders table and its data:

create table orders
 (customer_id varchar(5) not null,
 order_date datetime not null,
 item_id varchar(5) not null,
 quantity int not null,
 unit smallint default 1)
insert into orders values ("123", "1999/05/07", "987", 5, 1)
insert into orders values ("123", "1999/05/07", "654", 3, 12)
insert into orders values ("123", "1999/05/07", "579", 1, 1)

Also, create the following SQL table to store complete XML ResultSet
documents:

create table resultset_docs
 (id char(5),
 rs_doc jcs.xml.resultsets.ResultSetXml)

The ResultSet Document Type
ResultSet documents consist of ResultSetMetaData followed by ResultSetData
as shown in the following general form:

CHAPTER 5 XML in the Database

113

<?xml version="1.0"?>
 <!DOCTYPE ResultSet SYSTEM ’ResultSet.dtd’>
 <ResultSet>

<ResultSetMetaData>
…
</ResultSetMetaData>

<ResultSetData>
…
</ResultSetData>

</ResultSet>

The ResultSetMetaData portion of an XML ResultSet consists of the SQL
metadata returned by the methods of the JDBC ResultSet class. The
ResultSetMetaData for the example result set is:

<ResultSetMetaData
 getColumnCount="7">
 <ColumnMetaData
 getColumnDisplaySize="25"
 getColumnLabel="Date"
 getColumnName="Date"
 getColumnType="93"
 getPrecision="0"
 getScale="0"
 isAutoIncrement="false"
 isCurrency="false"
 isDefinitelyWritable="false"
 isNullable="false"

 isSigned="false" />
<ColumnMetaData
 getColumnDisplaySize="5"
 getColumnLabel="CustomerId"
 getColumnName="CustomerId"
 getColumnType="12"
 getPrecision="0"
 getScale="0"
 isAutoIncrement="false"
 isCurrency="false"
 isDefinitelyWritable="false"
 isNullable="false"

 isSigned="false" />
 <ColumnMetaData
 getColumnDisplaySize="50"
 getColumnLabel="CustomerName"
 getColumnName="CustomerName"
 getColumnType="12"
 getPrecision="0"

A Customizable Example for Different Result Sets

114

 getScale="0"
 isAutoIncrement="false"
 isCurrency="false"
 isDefinitelyWritable="false"
 isNullable="false"

 isSigned="false" />
<ColumnMetaData
 getColumnDisplaySize="5"
 getColumnLabel="ItemId"
 getColumnName="ItemId"
 getColumnType="12"
 getPrecision="0"
 getScale="0"
 isAutoIncrement="false"
 isCurrency="false"
 isDefinitelyWritable="false"
 isNullable="false"

 isSigned="false" />
 <ColumnMetaData
 getColumnDisplaySize="20"
 getColumnLabel="ItemName"
 getColumnName="ItemName"
 getColumnType="12"
 getPrecision="0"
 getScale="0"
 isAutoIncrement="false"
 isCurrency="false"
 isDefinitelyWritable="false"
 isNullable="false"

 isSigned="false" />
 <ColumnMetaData
 getColumnDisplaySize="11"
 getColumnLabel="Quantity"
 getColumnName="Quantity"
 getColumnType="4"
 getPrecision="0"
 getScale="0"
 isAutoIncrement="false"
 isCurrency="false"
 isDefinitelyWritable="false"
 isNullable="false"

 isSigned="true" />
 <ColumnMetaData
 getColumnDisplaySize="6"
 getColumnLabel="unit"
 getColumnName="unit"

CHAPTER 5 XML in the Database

115

 getColumnType="5"
 getPrecision="0"
 getScale="0"
 isAutoIncrement="false"
 isCurrency="false"
 isDefinitelyWritable="false"
 isNullable="false"

 isSigned="true" />
</ResultSetMetaData>

The names of the attributes of ColumnMetaData are simply the names of the
methods of the JDBC ResultSetMetaData class, and the values of those
attributes are the values returned by those methods.

The ResultSetData portion of an XML ResultSet document is a list of Row
elements, each having a list of Column elements. The text value of a Column
element is the value returned by the JDBC getString() method for the column.
The ResultSetData for the example is:

<ResultSetData>
 <Row>
 <Column name="Date">1999-07-04 00:00:00.0</Column>
 <Column name="CustomerId">123</Column>
 <Column name="CustomerName">Acme Alpha</Column>
 <Column name="ItemId">987</Column>
 <Column name="ItemName">Coupler</Column>
 <Column name="Quantity">5</Column>
 <Column name="unit">1</Column>
 </Row>
 <Row>
 <Column name="Date">1999-07-04 00:00:00.0</Column>
 <Column name="CustomerId">123</Column>
 <Column name="CustomerName">Acme Alpha</Column>
 <Column name="ItemId">654</Column>
 <Column name="ItemName">Connecter</Column>
 <Column name="Quantity">3</Column>
 <Column name="unit">12</Column>
 </Row>
 <Row>
 <Column name="Date">1999-07-04 00:00:00.0</Column>
 <Column name="CustomerId">123</Column>
 <Column name="CustomerName">Acme Alpha</Column>
 <Column name="ItemId">579</Column>
 <Column name="ItemName">Clasp</Column>
 <Column name="Quantity">1</Column>
 <Column name="unit">1</Column>
 </Row>

A Customizable Example for Different Result Sets

116

 </ResultSetData>
 </ResultSet>

The XML DTD for the ResultSetXml Document Type

The DTD for the XML ResultSet document type is:

<!ELEMENT ResultSet (ResultSetMetaData ,
 ResultSetData)>
 <!ELEMENT ResultSetMetaData (ColumnMetaData)+>
 <!ATTLIST ResultSetMetaData getColumnCount CDATA
 #IMPLIED>
 <!ELEMENT ColumnMetaData EMPTY>
 <!ATTLIST ColumnMetaData
 getCatalogName CDATA #IMPLIED
 getColumnDisplaySize CDATA #IMPLIED
 getColumnLabel CDATA #IMPLIED
 getColumnName CDATA #IMPLIED
 getColumnType CDATA #REQUIRED
 getColumnTypeName CDATA #IMPLIED
 getPrecision CDATA #IMPLIED
 getScale CDATA #IMPLIED
 getSchemaName CDATA #IMPLIED
 getTablename CDATA #IMPLIED
 isAutoIncrement (true|false) #IMPLIED
 isCaseSensitive (true|false) #IMPLIED
 isCurrency (true|false) #IMPLIED
 isDefinitelyWritable (true|false) #IMPLIED
 isNullable (true|false) #IMPLIED
 isReadOnly (true|false) #IMPLIED
 isSearchable (true|false) #IMPLIED
 isSigned (true|false) #IMPLIED
 isWritable (true|false) #IMPLIED
 >

<!ELEMENT ResultSetData (Row)*>
<!ELEMENT Row (Column)+>
<!ELEMENT Column (#PCDATA)>
<!ATTLIST Column
 null (true | false) "false"
 name CDATA #IMPLIED

The ResultSetXml Class for Result Set Documents
This section describes the ResultSetXml class that supports the ResultSet
DTD.

CHAPTER 5 XML in the Database

117

The ResultSetXml class is similar to the OrderXml class. It is a subclass of the
JXml class, which validates a document with the XML ResultSet DTD, and
also provides methods for accessing and updating the elements of the contained
XML ResultSet document.

• Constructor: ResultSetXml(String)

Validates that the argument contains a valid XML ResultSet document and
constructs a ResultSetXml object containing that document. For example,
if doc is a Java String variable containing an XML ResultSet document,
read from a file:

jcs.xml.resultset.ResultSetXml rsx =
new jcs.xml.resultset.ResultSetXml(doc);

• Constructor: ResultSetXml(query, cdataColumns, colNames,
dtdOption, server)

The parameters are all String.

The query parameter is any SQL query that returns a result set.

The server parameter identifies the Adaptive Server on which to execute
the query.

• If you invoke the method in a client environment, specify the server
name.

• If you invoke the method in a Adaptive Server (in a SQL statement or
isql), specify either an empty string or the string
“jdbc:default:connection,” indicating that the query should be
executed on the current Adaptive Server.

The method connects to the server, executes the query, retrieves the SQL
result set, and constructs a ResultSetXml object with that result set.

The cdataColumns parameter indicates which columns should be XML
CDATA sections. The colNames parameter indicates whether the resulting
XML should specify “name” attributes in the “Column” elements. The
dtdOption indicates whether the resulting XML should include the XML
DTD for the ResultSet document type in-line, or reference it externally.

For example:

jcs.xml.resultset.ResultSetXml rsx =
 new jcs.xml.resultset.ResultSetXml
 (“select 1 as ‘a’, 2 as ‘b’, 3 ”, “none”, “yes”,
 “external”, “antibes:4000?user=sa”);

A Customizable Example for Different Result Sets

118

This constructor call connects to the server specified in the last argument,
evaluates the SQL query given in the first argument, and returns an XML
ResultSet containing the data from the result set of the query. This simple
SQL query does not reference a table. If the constructor is called in the
Adaptive Server, then the server parameter should be an empty string or
jdbc:default:connection, to indicate a connection to the current server.

• String toSqlScript(resultTableName, columnPrefix, writeOption,
goOption)

The parameters are all String.

The method returns a SQL script with a create statement and a list of
insert statements that re-create the result set data.

The resultTableName parameter is the table name for the create and insert
statements. (SQL result sets do not specify a table name because they
could be derived from joins or unions.) The columnPrefix parameter is the
prefix to use in generated column names, which are needed for unnamed
columns in the result set. The writeOption parameter indicates whether the
script is to include the create statement, the insert statements, or both. The
goOption parameter indicates whether the script is to include the go
commands, which are required in isql and not supported in JDBC.

For example, if rsx is a Java variable of type ResultSetXml:

rsx>>toSqlScript(“systypes_copy”, “column_”, “both”, “yes”)

• String getColumn(int rowNumber, int columnNumber)

rowNumber is the index of a row in the result set; columnNumber is the
index of a column of the result set. The method returns the text of the
specified column.

For example, if rsx is a Java variable of type ResultSetXml:

select rsx>>getColumn(3, 4)

• String getColumn(int rowNumber, String columnName)

rowNumber is the index of a row in the result set; columnName is the name
of a column of the result set. The method returns the text of the specified
column.

For example, if rsx is a Java variable of type ResultSetXml:

select rsx>>getColumn(3, “name”)

• void setColumn(int rowNumber, int columnNumber, newValue)

CHAPTER 5 XML in the Database

119

rowNumber and columnNumber are as described for getColumn(). The
method sets the text of the specified column to newValue.

For example, if rsx is a Java variable of type ResultSetXml:

select rsx = rsx>>setColumn(3, 4, “new value”)

• void setColumn(int rowNumber, String columnName, newValue)

rowNumber and columnName are as described for getColumn(). The
method sets the text of the specified column to newValue.

For example, if rsx is a Java variable of type ResultSetXml:

select rsx = rsx>>setColumn(3, “name”, “new value”)

• Boolean allString(int columnNumber, String compOp, String
comparand)

columnNumber is the index of a column of the result set. compOp is a SQL
comparison operator (<, >, =, !=, <=, >=). comparand is a comparison
value. The method returns a value indicating whether the specified
comparison is true for all rows of the result set.

For example, if rsx is a Java variable of type ResultSetXml:

if rsx>>allString(3, “<”, “compare value”)…

This condition is true if in the result set represented by rsx, for all rows the
value of column 3, is less than “compare value.” This is a String
comparison. Similar methods could be used for other data types.

• Boolean someString(int columnNumber, String compOp, String
comparand)

columnNumber is the index of a column of the result set. compOp is a SQL
comparison operator (<, >, =, !=, <=, >=). comparand is a comparison
value. The method returns aa value indicating whether the specified
comparison is true for some row of the result set.

For example, if rsx is a Java variable of type ResultSetXml:

if rsx>>someString(3, “<”, “compare value”) …

This condition is true if in the result set represented by rsx, for some row
the value of column 3, is less than “compare value.”

A Customizable Example for Different Result Sets

120

Using the Element Storage Technique
This section uses the orders table to illustrate mapping between SQL data and
XML ResultSet documents.

• In “Composing a ResultSet XML Document from the SQL Data” on page
120, we generate an XML ResultSet document from the SQL data. We
assume that we are the originator of the XML ResultSet document. We
used the resulting XML ResultSet document to describe the ResultSet
DTD.

• In “Decomposing the XML ResultSet to SQL Data” on page 121, we re-
generate SQL data from the XML ResultSet document. We assume we are
the recipient of the XML ResultSet document.

Composing a ResultSet XML Document from the SQL Data

You can use Java methods to evaluate a given query and generate an XML
result set with the query’s data. This example uses a constructor method of the
ResultSetXml class. For example:

new jcs.xml.resultset.ResultSetXml
 (“select 1 as ‘a’, 2 as ‘b’, 3 ”, “none”,
 “yes”, “external”, “antibes:4000?user=sa”);

The method uses internal JDBC operations to execute the argument query, and
then constructs the XML ResultSet for the query’s data.

We can invoke this constructor in a client or in the Adaptive Server:

• If you invoke the constructor in a client, specify a server parameter that
identifies the Adaptive Server to be used when evaluating the query. The
query is evaluated in the Adaptive Server, but the XML document is
assembled in the client.

• If you invoke the constructor in the Adaptive Server, specify a null value
or jdbc:default:connection for the server. The query is evaluated in the
current server and the XML document is assembled there.

Generating a ResultSet in the Client

The main() method of the OrderResultSetClient class is invoked in a client
environment. main() invokes the constructor of the ResultSetXml class to
generate an XML ResultSet. The constructor executes the query, retrieves its
metadata and data using JDBC ResultSet methods, and assembles an XML
ResultSet document with the data.

CHAPTER 5 XML in the Database

121

import java.io.*;
import jcs.util.*;
public class OrderResultSetClient {
 public static void main (String[] args) {
 try{
 String orderQuery = "select order_date as Date,
 c.customer_id as CustomerId, "
 + "customer_name as CustomerName, "
 + "o.item_id as ItemId, i.item_name as ItemName, "
 + "quantity as Quantity, o.unit as unit "
 + "from customers c, orders o, items i "
 + "where c.customer_id=o.customer_id and
 o.item_id=i.item_id " ;

jcs.xml.resultset.ResultSetXml rsx
 = new jcs.xml.resultset.ResultSetXml(orderQuery,
 "none", "yes", "external",
 "antibes:4000?user=sa");
 FileUtil.string2File("OrderResultSet.xml",
 rsx.getXmlText());

} catch (Exception e) {
 System.out.println("Exception:");
 e.printStackTrace();
 }
 }
 }

Generating a ResultSet in Adaptive Server

The following SQL script invokes the constructor of the ResultSetXml class
in a server environment:

declare @rsx jcs.xml.resultset.ResultSetXml
select @rsx = new jcs.xml.resultset.ResultSetXml
 (“select 1 as ‘a’, 2 as ‘b’, 3 ”, “none”, “yes”, “external”, “”);
insert into resultset_docs values (“1”, @rsx)

Decomposing the XML ResultSet to SQL Data

In this section, you decompose an existing ResultSet document to SQL data.

• In section “Decomposing Data from an XML Order into SQL” on page
103, you invoke the order2Sql() method of the OrderXml class to
decompose an XML Order document into SQL data. order2Sql() directly
inserts the extracted data into a SQL table.

A Customizable Example for Different Result Sets

122

• In this example, the to toSqlScript() method of the ResultSetXml class
decomposes an XML ResultSet document into SQL data. Instead of
directly inserting extracted data into a SQL table, however, toSqlScript()
returns a SQL script with generated insert statements.

The two approaches are equivalent.

Decomposing the XML ResultSet Document in the Client

The main() method of ResultSetXml is executed in a client environment. It
copies the file OrderResultSet.xml, constructs a ResultSetXml object
containing the contents of that file, and invokes the toSqlScript() method of
that object to generate a SQL script that recreates the data of the result set. The
method stores the SQL script in the file order-resultset-copy.sql.

import java.io.*;
import jcs.util.*;
public class ResultSet2Sql{
 public static void main (String[] args) {
 try{
 String xml = FileUtil.file2String("OrderResultSet.xml");
 jcs.xml.resultset.ResultSetXml rsx
 = new jcs.xml.resultset.ResultSetXml(xml);
 String sqlScript
 = rsx.toSqlScript("orderresultset_copy", "col_",
 "both", "no");
 FileUtil.string2File("order-resultset-copy.sql",
 sqlScript);
 jcs.util.ExecSql.statement(sqlScript,
 “antibes:4000?user=sa”);
 } catch (Exception e) {
 System.out.println("Exception:");
 e.printStackTrace();
 }
 }
 }

The following is the SQL script generated by ResultSet2Sql.

set quoted_identifier on
 create table orderresultset_copy (
 Date datetime not null ,
 CustomerId varchar (5) not null ,
 CustomerName varchar (50) not null ,
 ItemId varchar (5) not null ,
 ItemName varchar (20) not null ,
 Quantity integer not null ,

CHAPTER 5 XML in the Database

123

 unit smallint not null
)
insert into orderresultset_copy values (
 ’1999-07-04 00:00:00.0’, ’123’,
 ’Acme Alpha’, ’987’, ’Widget’, 5, 1)
 insert into orderresultset_copy values (
 ’1999-07-04 00:00:00.0’, ’123’,
 ’Acme Alpha’, ’654’,
 ’Medium connecter’, 3, 12)
 insert into orderresultset_copy values (
 ’1999-07-04 00:00:00.0’, ’123’,
 ’Acme Alpha’, ’579’, ’Type 3 clasp’, 1, 1)

The SQL script includes the set quoted_identifier on command for those
cases where the generated SQL uses quoted identifiers.

Decomposing the XML ResultSet Document in Adaptive Server

The following SQL script invokes the toSqlScript() method in Adaptive
Server and then creates and populates a table with a copy of the result set data.

declare @rsx jcs.xml.resultset.ResultSetXml
select @rsx = rs_doc from resultset_docs where id=1
select @script = @rsx>>toSqlScript(“resultset_copy”,
“column_”, “both”, “no”)
declare @I integer
select @I = jcs.util.ExecSql.statement(@script, “”)

Using the Document Storage Technique
This section shows examples of storing XML ResultSet documents in single
SQL columns and techniques for referencing and updating the column
elements.

Storing an XML ResultSet Document in a SQL Column

The following SQL script generates an XML ResultSet document and stores it
in a table:

declare @query java.lang.StringBuffer
select @query = new java.lang.StringBuffer()
 -- The following “appends” build up a SQL select statement in
 the @query variable
 -- We use a StringBuffer, and the append method, so that the
 @query can be as long as needed.

A Customizable Example for Different Result Sets

124

select @query>>append("select order_date as Date,
c.customer_id as CustomerId, ")

select @query>>append("customer_name as CustomerName, ")
select @query>>append("o.item_id as ItemId, i.item_name as
 ItemName, ")
select @query>>append("quantity as Quantity, o.unit as unit ")
select @query>>append("from customers c, orders o, items i ")
select @query>>append("where c.customer_id=o.customer_id and
 o.item_id=i.item_id ")
declare @rsx jcs.xml.resultset.ResultSetXml
select @rsx = new jcs.xml.resultset.ResultSetXml
 (@query>>toString(), ’none’, ’yes’, ’external’ , ’’)
insert into resultset_docs values("1", @rsx)

Accessing the Columns of Stored ResultSet Documents

In “Storing an XML ResultSet Document in a SQL Column” on page 123 you
inserted a complete XML ResultSet document into the rs_doc column of the
resultset_docs table. In this section, use methods of the ResultSetXml class to
reference and update a stored ResultSet.

A Client-Side Call

The main() method of the ResultSetElements class is executed in a client
environment. It copies the file OrderResultSet.xml, constructs a ResultSetXml
document from it, and then accesses and updates the columns of the ResultSet.

import java.io.*;
import jcs.util.*;
public class ResultSetElements {
 public static void main (String[] args) {
 try{

String xml =
 FileUtil.file2String("OrderResultSet.xml");
 jcs.xml.resultset.ResultSetXml rsx
 = new jcs.xml.resultset.ResultSetXml(xml);

// Get the columns containing customer and date info
 String cname = rsx.getColumn(0, "CustomerName");
 String cid = rsx.getColumn(0, "CustomerId");
 String date = rsx.getColumn(0, "Date");

// Get the elements for item 1 (numbering from 0)
 String iName1 = rsx.getColumn(1, "ItemName");
 String iId1 = rsx.getColumn(1, "ItemId");
 String iQ1 = rsx.getColumn(1, "Quantity");
 String iU = rsx.getColumn(1, "unit");

System.out.println("\nBEFORE UPDATE: ");

CHAPTER 5 XML in the Database

125

 System.out.println("\n "+date+ " "+ cname + " " +
 cid);
 System.out.println("\n "+ iName1+" "+iId1+" "
 + iQ1 + " " + iU + "\n");

// Set the elements for item 1 (numbering from 0)
 rsx.setColumn(1, "ItemName", "Flange");
 rsx.setColumn(1, "ItemId", "777");
 rsx.setColumn(1, "Quantity","3");
 rsx.setColumn(1, "unit", "13");

// Get the updated elements for item 1 (numbering
 from 0) iName1 = rsx.getColumn(1, "ItemName");
 iId1 = rsx.getColumn(1, "ItemId");
 iQ1 = rsx.getColumn(1, "Quantity");
 iU = rsx.getColumn(1, "unit");

System.out.println("\nAFTER UPDATE: ");
 System.out.println("\n "+date+ " "+ cname + " " +
 cid);
 System.out.println("\n "+ iName1+" "+iId1+" "
 + iQ1 + " " + iU + "\n");

 // Copy the updated document to another file
 FileUtil.string2File("Order-updated.xml",
 rsx.getXmlText());

} catch (Exception e) {
 System.out.println("Exception:");
 e.printStackTrace();
 }
 }
 }

The FileUtil.string2File() method stores the updated ResultSet in the file
Order-updated.xml. The ResultSetMetaData of the updated document is
unchanged. The updated ResultSetData of the document is as follows with new
values in the second item.

<ResultSetData>
 <Row>
 <Column name="Date">1999-07-04 00:00:00.0</Column>
 <Column name="CustomerId">123</Column>
 <Column name="CustomerName">Acme Alpha</Column>
 <Column name="ItemId">987</Column>
 <Column name="ItemName">Widget</Column>
 <Column name="Quantity">5</Column>
 <Column name="unit">1</Column>
 </Row>
 <Row>
 <Column name="Date">1999-07-04 00:00:00.0</Column>

A Customizable Example for Different Result Sets

126

 <Column name="CustomerId">123</Column>
 <Column name="CustomerName">Acme Alpha</Column>
 <Column name="ItemId">777</Column>
 <Column name="ItemName">Flange</Column>
 <Column name="Quantity">3</Column>
 <Column name="unit">13</Column>
 </Row>
 <Row>
 <Column name="Date">1999-07-04 00:00:00.0</Column>
 <Column name="CustomerId">123</Column>
 <Column name="CustomerName">Acme Alpha</Column>
 <Column name="ItemId">579</Column>
 <Column name="ItemName">Type 3 clasp</Column>
 <Column name="Quantity">1</Column>
 <Column name="unit">1</Column>
 </Row>
 </ResultSetData>
 </ResultSet>

A Server-Side Script

Using the SQL script in “Storing XML Order Documents in SQL Columns”
on page 105, you stored complete XML ResultSet documents in the rs_doc
column of the resultset_docs table. The following SQL commands, executed in
a server environment, reference and update the columns contained in those
documents.

You can select columns by name or by number:

• Select the columns of row 1, specifying columns by name:

select rs_doc>>getColumn(1, "Date"),
 rs_doc>>getColumn(1, "CustomerId"),
 rs_doc>>getColumn(1, "CustomerName"),
 rs_doc>>getColumn(1, "ItemId"),
 rs_doc>>getColumn(1, "ItemName"),
 rs_doc>>getColumn(1, "Quantity"),
 rs_doc>>getColumn(1, "unit")
 from resultset_docs

• Select the columns of row 1, specifying columns by number:

select rs_doc>>getColumn(1, 0),
 rs_doc>>getColumn(1, 1),
 rs_doc>>getColumn(1, 2),
 rs_doc>>getColumn(1, 3),
 rs_doc>>getColumn(1, 4),
 rs_doc>>getColumn(1, 5),

CHAPTER 5 XML in the Database

127

 rs_doc>>getColumn(1, 6)
 from resultset_docs

Specify some non-existing columns and rows. Those references return null
values.

Select rs_doc>>getcolumn(1, "itemid"),
 rs_doc>>getcolumn(1, "xxx"),
 rs_doc>>getcolumn(1, "Quantity"),
 rs_doc>>getcolumn(99, "unit"),
 rs_doc>>getColumn(1, 876)
 from resultset_docs

Update columns in the stored ResultSet document:

update resultset_docs
 set rs_doc = rs_doc>>setColumn(1, "ItemName",
"Wrench")
 where id=”1”
update resultset_docs
 set rs_doc = rs_doc>>setColumn(1, "ItemId", "967")
 where id=”1”
update resultset_docs
 set rs_doc = rs_doc>>setColumn(1, "unit", "6")
 where id=”1”
select rs_doc>>getColumn(1, "ItemName"),
 rs_doc>>getColumn(1, "ItemId"),
 rs_doc>>getColumn(1, "unit")
 from resultset_docs
 where id=”1”

Quantified Comparisons in Stored ResultSet Documents

ResultSetXml contains two methods, allString() and someString(), for
quantified searches on columns of a ResultSetXML document. To illustrate
these two methods, first create some example rows in the order_results table.

The order_results table has been initialized with one row, whose id = “1” and
whose rs_doc column contains the original Order used in all examples.

The following statements copy that row twice, assigning id values of “2” and
“3” to the new rows. The order_results table now has three rows, with id
column values of “1,” “2,” and “3” and the original Order.

insert into resultset_docs(id, rs_doc) select "2", rs_doc
 from resultset_docs where id="1"
insert into resultset_docs (id, rs_doc) select "3", rs_doc
 from resultset_docs where id="1"

A Customizable Example for Different Result Sets

128

The following statements modify the row with an id column value of “1” so
that all three items have an ItemId of “100”:

update resultset_docs
 set rs_doc = rs_doc>>setColumn(0, "ItemId", "100")
 where id="1"
update resultset_docs
 set rs_doc = rs_doc>>setColumn(1, "ItemId", "110")
 where id="1"
update resultset_docs
 set rs_doc = rs_doc>>setColumn(2, "ItemId", "120")
 where id="1"

The following update statement modifies the row with id = “3” so that its
second item (from 0) has an ItemId of “999”:

update resultset_docs
 set rs_doc = rs_doc>>setColumn(2, "ItemId", "999")
 where id="3"

The following select statement displays the id column and the three ItemId
values for each row:

select id, rs_doc>>getColumn(0, "ItemId"),
 rs_doc>>getColumn(1, "ItemId"),
 rs_doc>>getColumn(2, "ItemId")
 from resultset_docs

The results of the select are:

 1 100 110 120
 2 987 654 579
 3 987 654 999

Note the following:

• The row with id of “2” is the original Order data.

• The row with id of “1” has been modified so that all ItemIds for that row
are less than “200.”

• The row with id of “3” has been modified so that some ItemId for that row
is greater than or equal to “9999,”

The following expresses the these quantifications with the allString() and
someString() methods:

select id, rs_doc>>allString(3, "<", "200") as “ALL test”
 from resultset_docs
select id, rs_doc>>someString(3, ">=", "999") as “SOME test”
 from resultset_docs

CHAPTER 5 XML in the Database

129

select id as “id for ALL test” from resultset_docs
 where rs_doc>>allString(3, "<", "200")>>booleanValue() = 1
select id as “id for SOME test” from resultset_docs
 where rs_doc>>someString(3, ">=", "999")>>booleanValue() = 1

The first two statements show the quantifier in the select list and give these
results:

The last two statements show the quantifier in the where clause and give these
results:

• Id for “all” test = “3”

• Id for “some” test = “1”

In the examples with the quantifier method in the where clause, note that:

• The where clause examples compare the method results with an integer
value of 1. SQL does not support the Boolean datatype as a function value,
but instead treats Boolean as equivalent to integer values 1and 0, for true
and false.

• The where clause examples use the booleanValue() method. The
allString() and someString() methods return type java.lang.Boolean,
which is not compatible with SQL integer. The Java booleanValue()
method returns the simple Boolean value from the Boolean object, which
is compatible with SQL integer. This behavior is a result of merging the
SQL and Java type systems.

The quantifier methods return java.lang.Boolean instead of simply Java
boolean so that they can return null when the column is out of range, which is
consistent with the SQL treatment of out-of-range conditions.

The following statements show quantifier references that specify column 33,
which does not exist in the data:

select id, rs_doc>>allString(33, "<", "200") as “ALL test”
 from resultset_docs
select id as “id for ALL test” from resultset_docs
 where rs_doc>>allString(33, "<", "200")>>booleanValue() = 1

Id “all” test “some” test

1 true false

2 false false

3 false true

A Customizable Example for Different Result Sets

130

The id for the “all” test = (empty).

Using the Hybrid Storage Technique
For faster and easier access to the CustomerID element, add a new customer_id
column to the resultset_docs table, and populate it with extracted CustomerID
elements:

alter table resultset_docs
 add customer_id varchar(5) null
update resultset_docs
 set customer_id = rs_doc>>getColumn(1, "CustomerId")

XML ResultSet Documents: Invalid XML Characters
This section describes two techniques for dealing with XML markup
characters in the result set.

When data values contain XML markup characters, you can enclose these
values in a CDATA section.

• When column names are quoted identifiers that contain XML markup
characters, you can substitute the quotes and markup characters with CML
entity symbols.

Each technique is described in the following sections.

Using CDATA Sections

The cdata parameter of the ResultSetXml constructor indicates which (if any)
columns of the SQL result set contain character data to be bracketed as CDATA
sections in the output XML. The cdata parameter can be “all,” “none,” or a
string of zero or one characters, where a “1” in the I-th position indicates that
the I-th column should be bracketed as a CDATA section.

Id “all” test

1 NULL

2 NULL

3 NULL

CHAPTER 5 XML in the Database

131

For example, create the table cdata in which data values in columns 2, 3, and
4 contain XML markup characters that must be bracketed as CDATA section
in the output:

create table cdata (
 id int,
 a varchar(250),
 b varchar(250),
 c varchar(250)
)
 go
insert into cdata values (
 1,
 "<p>some samples:</p>first
 second",
 "x > y || w & z",
 "x > y || w & z"
)

The following SQL statement generates an XML ResultSet document for this
table, specifying a value “0111” for the cdata parameter.

insert into resultsets (id, rs)
 values ("2", new jcs.xml.resultset.ResultSetXml(
 "select * from cdata", ’0111’, ’yes’, ’external’, ’’))

This SQL statement generates a SQL script for that XML ResultSet:

update resultsets
 set script =
 rs>>toSqlScript("markup_col_names",
 "col_", "both", "yes")
 where id="2"

The following utility calls retrieve the XML ResultSet and its SQL script:

java jcs.util.FileUtil -S "$SERVER" -A getstring -O cdata.xml \
 -Q "select new jcs.util.StringWrap(rs>>getXmlText()) from
 resultsets where id=’2’"
java jcs.util.FileUtil -S "$SERVER" -A getstring -O cdata.script\
 -Q "select new jcs.util.StringWrap(script) from resultsets
 where id=’2’"

This is the XML ResultSet:

<?xml version="1.0"?>
<!DOCTYPE ResultSet SYSTEM ’ResultSet.dtd’>
<ResultSet>
 <ResultSetMetaData getColumnCount="4">
 <ColumnMetaData getColumnDisplaySize="11" getColumnLabel="id"

A Customizable Example for Different Result Sets

132

getColumnName="id" getColumnType="4" getPrecision="0" getScale="0"
isAutoIncrement="false" isCurrency="false" isDefinitelyWritable="false"
isNullable="false" isSigned="true" />
 <ColumnMetaData getColumnDisplaySize="250" getColumnLabel="a"
getColumnName="a" getColumnType="12" getPrecision="0" getScale="0"
isAutoIncrement="false" isCurrency="false" isDefinitelyWritable="false"
isNullable="false" isSigned="false" />
 <ColumnMetaData getColumnDisplaySize="250" getColumnLabel="b"
getColumnName="b" getColumnType="12" getPrecision="0" getScale="0"
isAutoIncrement="false" isCurrency="false" isDefinitelyWritable="false"
isNullable="false" isSigned="false" />
 <ColumnMetaData getColumnDisplaySize="250" getColumnLabel="c"
getColumnName="c" getColumnType="12" getPrecision="0" getScale="0"
isAutoIncrement="false" isCurrency="false" isDefinitelyWritable="false"
isNullable="false" isSigned="false" />
 </ResultSetMetaData>
 <ResultSetData>
 <Row>
 <Column name="id">1</Column>
 <Column name="a">
 <![CDATA[<p>some samples:
 </p>firstsecond]]>
 </Column>
 <Column name="b">
 <![CDATA[x > y || w & z]]>
 </Column>
 <Column name="c">
 <![CDATA[x > y || w & z]]>
 </Column>
 </Row>
 </ResultSetData>
 </ResultSet>

This is the SQL script:

set quoted_identifier on
 create table markup_col_names (
 id integer not null ,
 a varchar (250) not null ,
 b varchar (250) not null ,
 c varchar (250) not null
)
 insert into markup_col_names values (
 1,
 ’<p>some samples:</p>firstsecond’,
 ’x > y || w & z’,
 ’x > y || w & z’

CHAPTER 5 XML in the Database

133

)

Column Names

The XML generated for a SQL result set specifies the column names of the
result set in the ResultSetMetaData section and in the ResultSetData section.

The following SQL select specifies a result set:

select 1 as “A>2”, 2 as “B & 3”, 3 as “A<<b”, 4 as
 ”D “”or”” e”

The result set has a single row, whose column values are 1, 2, 3, and 4. The
column names of those columns are quoted identifiers that contain XML
markup characters.

Since the ResultSetXml document for such a result set specifies the column
names in XML attributes, the quotation marks and XML markup characters in
those names must be replaced with XML entity symbols.

This problem cannot be handled with CDATA sections, since you cannot use
CDATA sections in attribute values.

The following is a SQL script that generates the ResultSetXml document for
the result set, then generates the SQL script for that ResultSetXml document.

Store the generated ResultSetXml document in the following table:

create table resultsets
 (id char(5) unique,
 rs jcs.xml.resultsets.ResultSetXml null,
 script java.lang.String null)

The following SQL statement generates the XML ResultSet document and
stores it into the resultsets table:

insert into resultsets (id, rs)
 values ("1", new jcs.xml.resultsets.ResultSetXml(
 "select 1 as ""A > 2"", 2 as ""b & 3"",
 3 as ""a<<b"", 4 as ""d """"or"""" e"" ",
 'none', 'yes', 'external', ''))

This SQL statement generates the SQL script for the XML ResultSet:

update resultsets
 set script = rs>>toSqlScript("markup_col_names", "col_",
 "create", "yes")
 where id="1"

A Customizable Example for Different Result Sets

134

The following utility calls retrieve the XML ResultSet and its SQL script into
client files cdata.xml and cdata.script.

java jcs.util.FileUtil -S "$SERVER" -A getstring -O cdata.xml \
 -Q "select new jcs.util.StringWrap(rs>>getXmlText()) from
 resultsets where id=’2’"
java jcs.util.FileUtil -S "$SERVER" -A getstring -O cdata.script\
 -Q "select new jcs.util.StringWrap(script) from resultsets
 where id=’2’"

The XML ResultSet document for the CDATA example is:

<?xml version="1.0"?>
<!DOCTYPE ResultSet SYSTEM ’ResultSet.dtd’>
<ResultSet>
 <ResultSetMetaData getColumnCount="4">
 <ColumnMetaData getColumnDisplaySize="11"
getColumnLabel="A > 2" getColumnName="A > 2"
getColumnType="4" getPrecision="0" getScale="0"
isAutoIncrement="false" isCurrency="false"
isDefinitelyWritable="false" isNullable="false"
isSigned="true" />
 <ColumnMetaData getColumnDisplaySize="11"
getColumnLabel="b & 3" getColumnName="b & 3"
getColumnType="4" getPrecision="0" getScale="0"
isAutoIncrement="false" isCurrency="false"
isDefinitelyWritable="false" isNullable="false"
isSigned="true" />
 <ColumnMetaData getColumnDisplaySize="11"
getColumnLabel="a<<b" getColumnName="a<<b"
getColumnType="4" getPrecision="0" getScale="0"
isAutoIncrement="false" isCurrency="false"
isDefinitelyWritable="false" isNullable="false"
isSigned="true" />
 <ColumnMetaData getColumnDisplaySize="11"
getColumnLabel="d ’or’ e" getColumnName="d ’or’ e"
getColumnType="4" getPrecision="0" getScale="0"
isAutoIncrement="false" isCurrency="false"
isDefinitelyWritable="false" isNullable="false"
isSigned="true" />
 </ResultSetMetaData>
 <ResultSetData>
 <Row>
 <Column name="A > 2">1</Column>
 <Column name="b & 3">2</Column>
 <Column name="a<<b">3</Column>
 <Column name="d ’or’ e">4</Column>

CHAPTER 5 XML in the Database

135

 </Row>
 </ResultSetData>
 </ResultSet>

The following is the output SQL script for the CDATA example:

set quoted_identifier on
 create table markup_col_names (
 "A > 2" integer not null ,
 "b & 3" integer not null ,
 "a<<b" integer not null ,
 "d ""or"" e" integer not null

A Customizable Example for Different Result Sets

136

137

C H A P T E R 6 Debugging Java in the Database

This chapter describes the Sybase Java debugger and how you can use it
when developing Java in Adaptive Server.

These topics are discussed:

Name Page

Introduction to Debugging Java 138

Using the Debugger 140

A Debugging Tutorial 147

Introduction to Debugging Java

138

Introduction to Debugging Java
You can use the Sybase Java debugger to test Java classes and fix problems
with them.

How the Debugger Works
The Sybase Java debugger is a Java application that runs on a client machine.
It connects to the database using the Sybase jConnect JDBC driver.

The debugger debugs classes running in the database. You can step through the
source code for the files as long as you have the Java source code on the disk
of your client machine. (Remember, the compiled classes are installed in the
database, but the source code is not).

Requirements for Using the Java Debugger
To use the Java debugger, you need:

• A Java runtime environment such as the Sun Microsystems Java Runtime
Environment, or the full Sun Microsystems JDK on your machine.

• The source code for your application on your client machine.

What You Can Do with the Debugger
Using the Sybase Java debugger, you can:

• Trace execution – Step line by line through the code of a class running in
the database. You can also look up and down the stack of functions that
have been called.

• Set breakpoints – Run the code until you hit a breakpoint, and stop at that
point in the code.

• Set break conditions – Breakpoints include lines of code, but you can also
specify conditions when the code is to break. For example, you can stop at
a line the tenth time it is executed, or only if a variable has a particular
value. You can also stop whenever a particular exception is thrown in the
Java application.

CHAPTER 6 Debugging Java in the Database

139

• Browse classes – You can browse through the classes installed into the
database that the server is currently using.

• Inspect and set variables – You can inspect the values of variables alter
their value when the execution is stopped at a breakpoint.

• Inspect and break on expressions – You can inspect the value of a wide
variety of expressions.

Using the Debugger

140

Using the Debugger
This section describes how to use the Java debugger. The next section provides
a simple tutorial.

Starting the Debugger and Connecting to the Database
The debugger is the JAR file Debug.jar, installed in your Adaptive Server
installation directory in $SYBASE/$SYBASE_ASE/debugger. If it is not already
present, add this file as the first element to your CLASSPATH environment
variable.

Debug.jar contains many classes. To start the debugger you invoke the
sybase.vm.Debug class, which has a main() method.You can start the
debugger in three ways:

• Run the jdebug script located in $SYBASE/$SYBASE_ASE/debugger.

“A Debugging Tutorial” on page 147 provides a sample debugging session
using the jdebug script.

• From the command line, enter:

java sybase.vm.Debug

In the Connect window, enter a URL, user login name, and password to
connect to the database.

• From Sybase Central:

a Start Sybase Central and open the Utilities folder, under Adaptive
Server Enterprise.

b Double-click the Java debugger icon in the right panel.

c In the Connect window, enter a URL, user login name, and password
to connect to the database.

Compiling Classes for Debugging
Java compilers such as the Sun Microsystems javac compiler can compile Java
classes at different levels of optimization. You can opt to compile Java code so
that information used by debuggers is retained in the compiled class files.

CHAPTER 6 Debugging Java in the Database

141

If you compile your source code without using switches for debugging, you can
still step through code and use breakpoints. However, you cannot inspect the
values of local variables.

To compile classes for debugging using the javac compiler, use the -g option:

javac -g ClassName.java

Attaching to a Java VM
When you connect to a database from the debugger, the Connection window
shows all currently active Java VMs under the user login name. If there are
none, the debugger goes into wait mode. Wait mode works like this:

• Each time a new Java VM is started, it shows up in the list.

• You may choose either to debug the new Java VM or to wait for another
one to appear.

• Once you have passed on a Java VM, you lose your chance to debug that
Java VM. If you then decide to attach to the passed Java VM, you must
disconnect from the database and reconnect. At this time, the Java VM
appears as active, and you can attach to it.

The Source Window
The Source window:

• Displays Java source code, with line numbers and breakpoint indicators
(an asterisk in the left column).

• Displays execution status in the status box at the bottom of the window.

• Provides access to other debugger windows from the menu.

The Debugger Windows

The debugger has the these windows:

• Breakpoints window – Displays the list of current breakpoints.

• Calls window – Displays the current call stack.

Using the Debugger

142

• Classes window – Displays a list of classes currently loaded in the Java
VM. In addition, this window displays a list of methods for the currently
selected class and a list of static variables for the currently selected class.
In this window you can set breakpoints on entry to a method or when a
static variable is written.

• Connection window – The Connection window is shown when the
debugger is started. You can display it again if you wish to disconnect from
the database.

• Exceptions window – You can set a particular exception on which to
break, or choose to break on all exceptions.

• Inspection window – Displays current static variables, and allows you to
modify them. You can also inspect the value of a Java expression, such as
the following:

• Local variables

• Static variables

• Expressions using the dot operator

• Expressions using subscripts []

• Expressions using parentheses, arithmetic, or logical operators.

For example, the following expressions could be used:

x[i].field
q + 1
i == 7
(i + 1)*3

• Locals window – Displays current local variables, and allows you to
modify them.

• Status window – Displays messages describing the execution state of the
Java VM.

Options
The complete set of options for stepping through source code are displayed on
the Run menu. They include the following:

CHAPTER 6 Debugging Java in the Database

143

Setting Breakpoints
When you set a breakpoint in the debugger, the Java VM stops execution at that
breakpoint. Once execution is stopped, you can inspect and modify the values
of variables and other expressions to better understand the state of the program.
You can then trace through execution step by step to identify problems.

Setting breakpoints in the proper places is a key to efficiently pinpointing the
problem execution steps.

The Java debugger allows you to set breakpoints not only on a line of code, but
on many other conditions. This section describes how to set breakpoints using
different conditions.

Function Shortcut key Description

Run F5 Continue running until
the next breakpoint, until
the Stop item is selected,
or until execution
finishes.

Step Over F7 or Space Step to the next line in the
current method. If the
line steps into a different
method, step over the
method, not into it. Also,
step over any breakpoints
within methods that are
stepped over.

Step Into F8 or i Step to the next line of
code. If the line steps into
a different method, step
into the method.

Step Out F11 Complete the current
method, and break at the
next line of the calling
method.

Stop Break execution.

Run to Selected F6 Run until the currently
selected line is executed
and then break.

Home F4 Select the line where the
execution is broken.

Using the Debugger

144

Breaking on a Line Number

When you break on a particular line of code, execution stops whenever that line
of code is executed.

To set a breakpoint on a particular line:

• In the Source window, select the line and press F9.

Alternatively, you can double-click a line.

When a breakpoint is set on a line number, the breakpoint is shown in the
Source window by an asterisk in the left column. If the Breakpoints window is
open, the method and line number is displayed in the list of breakpoints.

You can toggle the breakpoint on and off by repeatedly double-clicking or
pressing F9.

Breaking on a Class Method

When you break on a method, the break point is set on the first line of code in
the method that contains an executable statement.

To set a breakpoint on a class method:

1 From the Source window, choose Break→ New. The Break At window is
displayed.

2 Enter the name of a method in which you wish execution to stop. For
example:

JDBCExamples.selecter

stops execution whenever the JDBCExamples.selecter() method is
entered.

When a breakpoint is set on a method, the breakpoint is shown in the Source
window by an asterisk in the left column of the line where the breakpoint
actually occurs. If the Breakpoints window is open, the method is displayed in
the list of breakpoints.

Using Counts with Breakpoints

If you set a breakpoint on a line that is in a loop, or in a method that is
frequently invoked, you may find that the line is executed many times before
the condition you are really interested in takes place. The debugger allows you
to associate a count with a breakpoint, so that execution stops only when the
line is executed a set number of times.

CHAPTER 6 Debugging Java in the Database

145

To associate a count with a breakpoint:

1 From the Source window, select Break→Display. The Breakpoints
window is displayed.

2 In the Breakpoints window, click a breakpoint to select it.

3 Select Break→Count. A window is displayed with a field for entering a
number of iterations. Enter an integer value. The execution will stop when
the line has been executed the specified number of times.

Using Conditions with Breakpoints

The debugger allows you to associate a condition with a breakpoint, so that
execution stops only when the line is executed and the condition is met.

To associate a condition with a breakpoint:

1 From the Source window, select Break→Display. The Breakpoints
window is displayed.

2 In the Breakpoints window, click a breakpoint to select it.

3 Select Break→Condition. A window is displayed with a field for entering
an expression. The execution will stop when the condition is true.

The expressions used here are the same as those that can be used in the
Inspection window, and include the following:

• Local variables

• Static variables

• Expressions using the dot operator

• Expressions using subscripts []

• Expressions using parentheses, arithmetic, or logical operators.

Breaking When Execution Is Not Interrupted

With a single exception, breakpoints can only be set when program execution
is interrupted. If you clear all breakpoints, and run the program you are
debugging to completion, you can no longer set a breakpoint on a line or at the
start of a method. Also, if a program is running in a loop, execution is
continuing and is not interrupted.

Using the Debugger

146

To debug your program under either of these conditions, select Run→Stop
from the Source window. This stops execution at the next line of Java code that
is executed. You can then set breakpoints at other points in the code.

Disconnecting from the Database
When the program has run to completion, or at anytime during debugging, you
can disconnect from the database from the Connect window. Then, exit the
Source window and reconnect to the database after the debug program
terminates.

CHAPTER 6 Debugging Java in the Database

147

A Debugging Tutorial
This section takes you through a simple debugging session.

Before You Begin
The source code for the class used in this tutorial is located in
$SYBASE/$SYBASE_ASE/sample/JavaSql/manual-
examples/JDBCExamples.java.

Before you run the debugger, compile the source code using the javac
command with the -g option.

See “Creating Java Classes and JARs” on page 22 for complete instructions for
compiling and installing Java classes in the database.

Start the Java Debugger and Connect to the Database
You can start the debugger and connect to the database using a script, command
line options, or Sybase Central. In this tutorial, we use jdebug to start the
debugger. You can use any database.

Follow these steps:

1 Start Adaptive Server.

2 If Java queries have not yet been executed on your server, run any Java
query to initialize the Java subsystem and start a Java VM.

3 Run the $SYBASE/$SYBASE_ASE/debugger/jdebug script. jdebug
prompts you for these parameters:

a Machine name of the Adaptive Server

b Port number for the database

c Your login name

d Your password

e An alternate path to Debug.jar if its location is not in your
CLASSPATH

Once the connection is established, the debugger window displays a list of
available Java VMs or “Waiting for a VM.”

A Debugging Tutorial

148

Attach to a Java VM
To attach to a Java VM from your user session:

1 With the debugger running, connect to the sample database from isql as
the sa:

$SYBASE/bin/isql -Usa -P

Note You cannot start Java execution from the debugger. To start a Java
VM you must carry out a Java operation from another connection using the
same user name.

2 Execute Java code using the following statements:

select JDBCExamples.serverMain(‘createtable’)
select JDBCExamples.serverMain(‘insert’)
select JDBCExamples.serverMain(‘select’)

The Sybase Java VM starts in order to retrieve the Java objects from the
table. The debugger immediately stops execution of the Java code.

The debugger Connection window displays the Java VMs belonging to the
user in this format:

VM#: “ login_name, spid: spid#”

3 In the debugger Connection window, click the Java VM you want and then
click Attach to VM. The debugger attaches to the Java VM and the Source
window appears. The Connection window disappears.

Next, enable the Source window to show the source code for the method.
The source code is available on disk.

Load Source Code into the Debugger
The debugger looks for source code files. You need to make the
$SYBASE/$SYBASE_ASE/sample/JavaSql/manual-examples/ subdirectory
available to the debugger, so that the debugger can find source code for the
class currently executing in the database.

To add a source code location to the debugger:

1 From the Source window, select File→Source Path. The Source Path
window displays.

CHAPTER 6 Debugging Java in the Database

149

2 From the Source Path window, select Path→Add. Enter the following
location into the text box:

$SYBASE/$SYBASE_ASE/sample/JavaSql/
manual-examples/

The source code for the JDBCExamples class displays in the window,
with the first line of the Query method serverMain() highlighted. The
Java debugger has stopped execution of the code at this point.

You can now close the Source Path window.

Step Through Source Code
You can step through source code in the Java debugger in several ways. In this
section we illustrate the different ways you can step through code using the
serverMain() method.

When execution pauses at a line until you provide further instructions, we say
that the execution breaks at the line. The line is a breakpoint. Stepping
through code is a matter of setting explicit or implicit breakpoints in the code,
and executing code to that breakpoint.

Following the previous section, the debugger should have stopped execution of
JDBCExamples.serverMain() at the first statement:

Examples

Here are some steps you can try:

1 Stepping into a function – press F7 to step to the next line in the current
method.

2 Press F8 to step into the function doAction() in line 99.

3 Run to a selected line. You are now in function doAction(). Click on line
155 and press F6 to run to that line and break:

String workString = “Action(“ + action + “)”;

4 Set a breakpoint and execute to it – select line 179 and press F9 to set a
breakpoint on that line when running “isql> select
JDBCExamples.serverMain(‘select’)”:

workString + = selecter(con);

Press F5 to execute to that line.

A Debugging Tutorial

150

5 Experiment – try different methods of stepping through the code. End with
F5 to complete the execution.

When you have completed the execution, the Interactive SQL Data
window displays:

Action(select) – Row with id = 1: name(Joe Smith)

Inspecting and Modifying Variables
You can inspect the values of both local variables (declared in a method) and
class static variables in the debugger.

Inspecting Local Variables

You can inspect the values of local variables in a method as you step through
the code, to better understand what is happening.

To inspect and change the value of a variable:

1 Set a breakpoint at the first line of the selecter() method from the
Breakpoint window. This line is:

String sql = "select name, home from xmp where
id=?";

2 In Interactive SQL, enter the following statement again to execute the
method:

select JDBCExamples.serverMain(‘select’)

The query executes only as far as the breakpoint.

3 Press F7 to step to the next line. The sql variable has now been declared
and initialized.

4 From the Source window, select Window→Locals. The Local window
appears.

The Locals window shows that there are several local variables. The sql
variable has a value of zero. All others are listed as not in scope, which
means they are not yet initialized.

You must add the variables to the list in the Inspect window.

5 In the Source window, press F7 repeatedly to step through the code. As
you do so, the values of the variables appear in the Locals window.

CHAPTER 6 Debugging Java in the Database

151

If a local variable is not a simple integer or other quantity, then as soon as
it is set a + sign appears next to it. This means the local variable has fields
that have values. You can expand a local variable by double-clicking the +
sign or setting the cursor on the line and pressing Enter.

6 Complete the execution of the query to finish this exercise.

Modifying Local Variables

You can also modify values of variables from the Locals window.

To modify a local variable:

1 In the debugger Source window, set a breakpoint at the following line in
the selecter() method of the serverMain
 class:

String sql = "select name, home from xmp where
id=?";

2 Step past this line in the execution.

3 Open the Locals window. Select the id variable, and select
Local→Modify. Alternatively, you can set the cursor on the line and press
Enter.

4 Enter a value of 2 in the text box, and click OK to confirm the new value.
The id variable is set to 2 in the Locals window.

5 From the Source window, press F5 to complete execution of the query. In
the Interactive SQL Data window, an error message displays indicating
that no rows were found.

Inspecting Static Variables

You can also inspect the values of class-level variables (static variables).

To inspect a static variable:

1 From the debugger Source window, select Window→Classes. The Classes
window is displayed.

2 Select a class in the left box. The methods and static variables of the class
are displayed in the boxes on the right.

3 Select Static→Inspect. The Inspect window is displayed. It lists the
variables available for inspection.

A Debugging Tutorial

152

153

C H A P T E R 7 Reference Topics

This chapter presents information on several reference topics.

These topics are discussed:

Name Page

Assignments 154

Allowed Conversions 156

Transferring Java-SQL Objects to Clients 157

Supported Java API Packages, Classes, and Methods 158

Invoking SQL from Java 161

Transact-SQL Commands from Java Methods 161

Datatype Mapping Between Java and SQL 166

Java-SQL Identifiers 168

Java-SQL Class and Package Names 169

Java-SQL Column Declarations 170

Java-SQL Variable Declarations 171

Java-SQL Column References 172

Java-SQL Member References 173

Java-SQL Method Calls 175

Assignments

154

Assignments
This section defines the rules for assignment between SQL data items whose
datatypes are Java-SQL classes.

Each assignment transfers a source instance to a target data item:

• For an insert statement specifying a table that has a Java-SQL column,
refer to the Java-SQL column as the target data item and the insert value
as the source instance.

• For an update statement that updates a Java-SQL column, refer to the
Java-SQL column as the target data item and the update value as the source
instance.

• For a select or fetch statement that assigns to a variable or parameter,
refer to the variable or parameter as the target data item and the retrieved
value as the source instance.

Note If the source is a variable or parameter, then it is a reference to an object
in the Java VM. If the source is a column reference, which contains a
serialization, then the rules for column references (see Java-SQL Column
References on page 172) yield a reference to an object in the Java VM. Thus,
the source is a reference to an object in the Java VM.

Assignment Rules at Compile-Time
1 Define SC and TC as compile-time class names of the source and target.

Define SC_T and TC_T as classes named SC and DT in the database
associated with the target. Similarly, define SC_S and TC_S as classes
named SC and DT in the database associated with the source.

2 SC_T must be the same as TC_T or a subclass of TC_T.

Assignment Rules at Runtime
Assume that DT_SC is the same as DT_TC or its subclass.

CHAPTER 7 Reference Topics

155

• Define RSC as the runtime class name of the source value. Define RSC_S
as the class named RSC in the database associated with the source. Define
RSC_T as the name of a class RSC_T installed in the database associated
with the target. If there is no class RSC_T, then an exception is raised. If
RSC_T is neither the same as TC_T nor a subclass of TC_T, then an
exception is raised

• If the databases associated with the source and target are not the same
database, then the source object is serialized by its current class, RSC_S,
and that serialization is deserialized by the class RSC_T that it will be
associated with in the database associated with the target.

• If the target is a SQL variable or parameter, then the source is copied to the
target.

• If the target is a Java-SQL column, then the source is serialized, and that
serialization is copied to the client.

Allowed Conversions

156

Allowed Conversions
You can use convert to change the expression datatype in these ways:

• Convert Java types where the Java datatype is a Java object type to the
SQL datatype shown in “Datatype Mapping Between Java and SQL” on
page 166. The action of the convert function is the mapping implied by
the Java-SQL mapping

• Convert SQL datatypes to Java types shown in “Datatype Mapping
Between Java and SQL” on page 166. The action of the convert function
is the mapping implied by the SQL-Java mapping.

• Convert any Java-SQL class installed in the SQL system to any other Java-
SQL class installed in the SQL system if the compile-time datatype of the
expression (source class) is a subclass or superclass of the target class.
Otherwise, an exception is raised.

The result of the conversion is associated with the current database.

See “Using the SQL convert function for Java subtypes,” for a discussion of
the use of the convert function for Java subtypes.

CHAPTER 7 Reference Topics

157

Transferring Java-SQL Objects to Clients
When a value whose datatype is a Java-SQL object type is transferred from
Adaptive Server to a client, the data conversion of the object depends on the
client type:

• If the client is an isql client, the toString() method of the object is invoked
and the result is truncated to varchar(50), which is transferred to the client.

• If the client is a Java client that uses jConnect 4.0 or later, the server
transmits the object serialization to the client. This serialization is
seamlessly deserialized by jConnect to yield a copy of the object.

• If the client is a bcp client:

• If the object is a column declared as in row, the serialized value
contained in the column is transferred to the client as a varbinary(255)
value.

• Otherwise, the serialized value of the object (the result of the
writeObject method of the object) is transferred to the client as an
image value.

Supported Java API Packages, Classes, and Methods

158

Supported Java API Packages, Classes, and Methods
Adaptive Server supports many but not all classes and methods in the Java API.
In addition, Adaptive Server may impose security restrictions and
implementation limitations. For example, Adaptive Server does not support all
of the thread creation and manipulation facilities of java.lang.Thread.

The supported packages are installed with Adaptive Server and are always
available. They cannot be installed by the user.

This section lists:

• Supported Java packages and classes

• Unsupported Java packages

• Unsupported java.sql methods

Supported Java Packages and Classes
• java.io

• Externalizable

• DataInput

• DataOutput

• ObjectInputStream

• ObjectOutputStream

• Serializable

• java.lang

• java.lang.reflect

• java.math

• java.sql – the JDBC driver, see “Unsupported java.sql Methods” on page
159

• java.text

• java.util

• java.util.zip

CHAPTER 7 Reference Topics

159

Unsupported Java Packages
• java.applet

• java.awt

• java.awt.datatransfer

• java.awt.event

• java.awt.image

• java.awt.peer

• java.beans

• java.rmi

• java.rmi.dgc

• java.rmi.registry

• java.rmi.server

• java.security

• java.security.acl

• java.security.interfaces

• java.net

Unsupported java.sql Methods
• Connection.commit()

• Connection.getMetaData()

• Connection.nativeSQL()

• Connection.rollback()

• Connection.setAutoCommit()

• Connection.setCatalog()

• Connection.setReadOnly()

• Connection.setTransactionIsolation()

• DatabaseMetaData.* (all methods)

• PreparedStatement.setAsciiStream()

Supported Java API Packages, Classes, and Methods

160

• PreparedStatement.setUnicodeStream()

• PreparedStatement.setBinaryStream()

• ResultSetMetaData.getCatalogName()

• ResultSetMetaData.getSchemaName()

• ResultSetMetaData.getTableName()

• ResultSetMetaData.isCaseSensitive()

• ResultSetMetaData.isReadOnly()

• ResultSetMetaData.isSearchable()

• ResultSetMetaData.isWritable()

• Statement.getMaxFieldSize()

• Statement.setMaxFieldSize()

• Statement.setCursorName()

• Statement.setEscapeProcessing()

• Statement.getQueryTimeout()

• Statement.setQueryTimeout()

CHAPTER 7 Reference Topics

161

Invoking SQL from Java
Adaptive Server supplies a native JDBC driver, java.sql, that implements
JDBC 1.1 specifications. It is described at http://www.javasoft.com. java.sql
enables Java methods executing in Adaptive Server to perform SQL
operations.

Special Considerations
java.sql.DriverManager.getConnection() accepts these URLs:

• null

• “” (the null string)

• jdbc:default:connection

When invoking SQL from Java some restrictions apply:

• A SQL query that is performing update actions (update, insert, or delete)
cannot use the facilities of java.sql to invoke other SQL operations that
also perform update actions.

• Triggers that are fired by SQL using the facilities of java.sql cannot
generate result sets.

• java.sql cannot be used to execute extended stored procedures or remote
stored procedures.

Transact-SQL Commands from Java Methods
You can use certain Transact-SQL commands in Java methods called within
the SQL system. Table 7-1 lists Transact-SQL commands and whether or not
you can use them in Java methods.

Table 7-1: Support status of Transact-SQL commands

Command Status

alter database Not supported.

alter role Not supported.

alter table Supported.

begin ... end Supported.

begin transaction Not supported.

break Supported.

Invoking SQL from Java

162

case Supported.

checkpoint Not supported.

commit Not supported.

compute Not supported.

connect - disconnect Not supported.

continue Supported.

create database Not supported.

create default Not supported.

create existing table Not supported.

create index Not supported.

create procedure Not supported.

create role Not supported.

create rule Not supported.

create schema Not supported.

create table Supported.

create trigger Not supported.

create view Not supported.

cursors Not supported.
Only “server cursors” are
supported, that is, cursors
that are declared and used
within a stored procedure.

dbcc Not supported.

declare Supported.

disk init Not supported.

disk mirror Not supported.

disk refit Not supported.

disk reinit Not supported.

disk remirror Not supported.

disk unmirror Not supported.

drop database Not supported.

drop default Not supported.

drop index Not supported.

drop procedure Not supported.

drop role Not supported.

drop rule Not supported.

drop table Supported.

Command Status

CHAPTER 7 Reference Topics

163

drop trigger Not supported.

drop view Not supported.

dump database Not supported.

dump transaction Not supported.

execute Supported.

goto Supported.

grant Not supported.

group by and having
clauses

Supported.

if…else Supported.

insert table Supported.

kill Not supported.

load database Not supported.

load transaction Not supported.

online database Not supported.

order by Clause Supported.

prepare transaction Not supported.

print Not supported.

raiserror Supported.

readtext Not supported.

return Supported.

revoke Not supported.

rollback trigger Not supported.

rollback Not supported.

save transaction Not supported.

set See Table 7-2 for set
options.

setuser Not supported.

shutdown Not supported.

truncate table Supported.

union Operator Supported.

update statistics Not supported.

update Supported.

use Not supported.

waitfor Supported.

where Clause Supported.

while Supported.

Command Status

Invoking SQL from Java

164

Table 7-2 lists set command options and whether or not you can use them in
Java methods.

Table 7-2: Support status of set command options

writetext Not supported.

set Command Option Status

ansinull Supported.

ansi_permissions Supported.

arithabort Supported.

arithignore Supported.

chained Not supported. See Note 1.

char_convert Not supported.

cis_rpc_handling Not supported

close on endtran Not supported

cursor rows Not supported

datefirst Supported

dateformat Supported

fipsflagger Not supported

flushmessage Not supported

forceplan Supported

identity_insert Supported

language Not supported

lock Supported

nocount Supported

noexec Not supported

offsets Not supported

or_strategy Supported

parallel_degree Supported. See Note 2.

parseonly Not supported

prefetch Supported

process_limit_action Supported. See Note 2.

procid Not supported

proxy Not supported

quoted_identifier Supported

replication Not supported

role Not supported

rowcount Supported

Command Status

CHAPTER 7 Reference Topics

165

scan_parallel_degree Supported. See Note2.

self_recursion Supported

session_authorization Not supported

showplan Supported

sort_resources Not supported

statistics io Not supported

statistics subquerycache Not supported

statistics time Not supported

string_rtruncation Supported

table count Supported

textsize Not supported

transaction iso level Not supported. See Note 1.

transactional_rpc Not supported

Note (1) set commands with options chained or
transaction isolation level are allowed only if the setting
that they specify is already in effect. That is, this kind of
set command is allowed if it has no effect. This is done to
support common coding practises in stored procedures.

Note (2) set commands pertaining to parallel degree are
allowed but have no effect. This supports the use of stored
procedures that set the parallel degree for other contexts.

set Command Option Status

Datatype Mapping Between Java and SQL

166

Datatype Mapping Between Java and SQL
Adaptive Server maps SQL datatypes to Java types (SQL-Java datatype
mapping) and Java scalar types to SQL datatypes (Java-SQL datatype
mapping). Table 7-3 shows SQL-Java datatype mapping.

Table 7-3: Mapping SQL datatypes to Java types

Table 7-4 shows Java-SQL datatype mapping.

Table 7-4: Mapping Java scalar types to SQL datatypes

SQL type Java type

char String

varchar String

nchar String

nvarchar String

text String

numeric java.math.BigDecimal

decimal java.math.BigDecimal

money java.math.BigDecimal

smallmoney Java.math.BigDecimal

bit boolean

tinyint byte

smallint short

integer int

real float

float double

double precision double

binary byte[]

varbinary byte[]

image byte[]

datetime java.sql.Timestamp

smalldatetime java.sql.Timestamp

Java Scalar type SQL type

boolean bit

byte tinyint

short smallint

int integer

long integer

float real

CHAPTER 7 Reference Topics

167

double double

Java Scalar type SQL type

Java-SQL Identifiers

168

Java-SQL Identifiers
Description Java-SQL identifiers are Java identifiers that can be referenced in SQL. They

are a subset of Java identifiers.

Syntax java_sql_identifier ::= alphabetic character | underscore (_) symbol
[alphabetic character | arabic numeral | underscore(_) symbol |
dollar ($) symbol]

Usage • Java-SQL identifiers can be a maximum of 255 bytes in length if they are
surrounded by quotation marks. Otherwise, they must be 30 bytes or less.

• The first character of the identifier must be either an alphabetic character
(uppercase or lowercase) or the underscore (_) symbol. Subsequent
characters can include alphabetic characters (uppercase or lowercase),
numbers, the dollar ($) symbol, or the underscore (_) symbol.

• Java-SQL identifiers are always case sensitive.

Delimited Identifiers

• Delimited identifiers are object names enclosed in double quotes. Using
delimited identifiers for Java-SQL identifiers allows you to avoid certain
restrictions on the names of Java-SQL identifiers.

Note You can use double quotes with Java-SQL identifiers whether the
set quoted_identifier option is on or off.

• Delimited identifiers allow you to use SQL reserved words for packages,
classes, methods, and so on. Each time you use the delimited identifier in
a statement, you must enclose it in double quotes. For example:

create table t1
(c1 char(12)
c2 p1.”select”.p2.”jar”)

• Double quotes surround only individual Java-SQL identifiers, not the fully
qualified name.

See also For additional information about identifiers, see Chapter 5, “Transact-SQL
Topics,” in the Reference Manual.

CHAPTER 7 Reference Topics

169

Java-SQL Class and Package Names
Description To reference a Java-SQL class or package, use the following syntax:

Syntax java_sql_class_name ::= [java_sql_package_name.]java_sql_identifier

java_sql_package_name ::=
[java_sql_package_name.]java_sql_identifier

Parameters java_sql_class_name
The fully qualified name of a Java-SQL class in the current database.

java_sql_package_name
The fully qualified name of a Java-SQL package in the current database.

Usage For Java-SQL class names:

• A class name reference always refers to a class in the current database.

• If you specify a Java-SQL class name without referencing the package
name, only one Java-SQL class of that name must exist in the current
database, and its package must be the default (anonymous) package.

• If a SQL user-defined datatype and a Java-SQL class possess the same
sequence of identifiers, Adaptive Server uses the SQL user-defined
datatype name and ignores the Java-SQL class name

For Java-SQL package names:

• If you specify a Java-SQL subpackage name, you must reference the
subpackage name with its package name:

java_sql_package_name.java_sql_subpackage_name

• Use Java-SQL package names only as qualifiers for class names or
subpackage names and to delete packages from the database using the
remove java command.

Java-SQL Column Declarations

170

Java-SQL Column Declarations
Description To declare a Java-SQL column when you create or alter a table, use the

following syntax:

Syntax java_sql_column ::= column_name java_sql_class_name

Parameters java_sql_column
Specifies the syntax of Java-SQL column declarations.

column_name
The name of the Java-SQL column.

java_sql_class_name
The name of a Java-SQL class in the current database. This is the “declared
class” of the column.

Usage • The declared class must implement either the Serializable or
Externalizable interface.

• A Java-SQL column is always associated with the current database.

• A Java-SQL column cannot be specified as:

• not null

• unique

• A primary key

See also You use a Java-SQL column declaration only when you create or alter a table.
See the create table and alter table information in the Reference Manual.

CHAPTER 7 Reference Topics

171

Java-SQL Variable Declarations
Description Use Java-SQL variable declarations to declare variables and stored procedure

parameters for datatypes that are Java-SQL classes.

Syntax java_sql_variable ::= @variable_name java_sql_class_name

java_sql_parameter ::= @parameter_name java_sql_class_name

Parameters java_sql_variable
Specifies the syntax of a Java-SQL variable in a SQL stored procedure.

java_sql_parameter
Specifies the syntax of a Java-SQL parameter in a SQL stored procedure.

java_sql_class_name
The name of a Java-SQL class in the current database.

Usage A java_sql_variable or java_sql_parameter is always associated with the
database containing the stored procedure.

See also Refer to the Reference Manual for more information about variable
declarations.

Java-SQL Column References

172

Java-SQL Column References
Description To reference a field or method of a class or class instance, use the following

syntax:

Syntax column_reference ::=
[[[database_name.]owner.]table_name.]column_name
| database_name..table_name.column_name

Parameters column_reference
A reference to a column whose datatype is a Java-SQL class.

Usage • If the value of the column is null, then the column reference is also null.

• If the value of the column is a Java serialization, S, and the name of its
class is CS, then:

• If the class CS does not exist in the current database or if CS is not the
name of a class in the database associated with the serialization, then
an exception is raised.

Note The database associated with the serialization is normally the
database that contains the column. Serializations contained in work
tables and in temporary tables created with “insert into #tempdb” are,
however, associated with the database in which the serialization was
stored originally.

• The value of the column reference is:

CSC.readObject(S)

where CSC is the column reference. If the expression raises an
uncaught Java exception, then an exception is raised.

The expression yields a reference to an object in the Java VM, which
is associated with the database associated with the serialization.

CHAPTER 7 Reference Topics

173

Java-SQL Member References
Description References a field or method of a class or class instance.

Syntax member_reference ::= class_member_reference |
instance_member_reference

class_member_reference ::= java_sql_class_name.method_name

instance_member_reference ::= instance_expression>>member_name

instance_expression ::= column_reference | variable_name
| parameter_name | method_call | member_reference

member_name ::= field_name | method_name

Parameters member_reference
An expression that describes a field or method of a class or object.

class_member_reference
An expression that describes a static method of a Java-SQL class.

instance_member_reference
An expression that describes a static or dynamic method or field of a Java-
SQL class instance.

java_sql_class_name
A fully qualified name of a Java-SQL class in the current database.

instance_expression
An expression whose datatype is a Java-SQL class.

member_name
The name of a field or method of the class or class instance.

Usage • If a member references a field of a class instance, the instance has a null
value, and the Java-SQL member reference is the target of a fetch, select,
or update statement, then an exception is raised.

Otherwise, the Java-SQL member reference has the null value.

• The double angle (>>) and dot (.) qualification takes precedence over any
operator, such as the addition (+) or equal to (=) operator, for example:

X>>A1>>B1 + X>>A1>>B2

In this expression, the addition operation is performed after the members
have been referenced.

• The field or method designated by a member reference is associated with
the same database as that of its Java-SQL class or instance of its Java-SQL
class.

Java-SQL Member References

174

If the Java type of a member reference is one of the Java scalar types (such
as boolean, byte, and so on), then the corresponding SQL datatype of the
reference is obtained by mapping the Java type to its equivalent SQL type.

If the Java type of a member reference is an object type, then the SQL
datatype is the same Java object type or class.

CHAPTER 7 Reference Topics

175

Java-SQL Method Calls
Description To invoke a Java-SQL method, which returns a single value, use the following

syntax:

Syntax method_call ::= member_reference ([parameters])
| new java_sql_class_name ([parameters])

parameters ::= parameter [(, parameter)...]

parameter ::= expression

Parameters method_call
An invocation of a class method, instance method, or class constructor. A
method call can be used in an expression where a non-constant value of the
method’s datatype is required.

member_reference
A member reference that denotes a method.

parameters
The list of parameters to be passed to the method. If there are no parameters,
include empty parentheses.

Usage Method Overloading

• When there are methods with the same name in the same class or instance,
the issue is resolved according to Java method overloading rules.

Datatype of Method Calls

• The datatype of a method call is determined as follows:

• If a method call specifies new, its datatype is that of its Java-SQL
class.

• If a method call specifies a member reference that denotes a type-
valued method, then the datatype of the method call is that type.

• If a method call specifies a member reference that denotes a void
static method, then the datatype of the method call is SQL integer.

• If a method call specifies a member reference that denotes a void
instance method of a class, then the datatype of the method call is that
of the class.

• If you want to include a parameter in a member reference when the
parameter is a Java-SQL instance associated with another database, you
must ensure that the class name associated with the Java-SQL instance is
included in both databases. Otherwise, an exception is raised.

Runtime Results

Java-SQL Method Calls

176

• The runtime result of a method call is as follows:

• If a method call specifies a member reference whose runtime value is
null (that is, a reference to a member of a null instance), then the result
is null.

• If a method call specifies a member reference that denotes a type-
valued method, then the result is the value returned by the method.

• If a method call specifies a member reference that denotes a void
static method, then the result is the null value.

• If a method call specifies a member reference that denotes a void
instance method of an instance of a class, then the result is a reference
to that instance.

• The method call and result of the method call are associated with the
same database.

• Adaptive Server does not pass the null value as the value of a
parameter to a method whose Java type is scalar.

177

Glossary

This glossary describes Java and Java-SQL terms used in this book. For a
description of Adaptive Server and SQL terms, refer to the Adaptive
Server Glossary.

assignment A generic term for the data transfers specified by select, fetch, insert, and
update T-SQL commands. An assignment sets a source value into a target
data item.

associated JAR If a class/jar is installed with installjava and the -jar option, then the JAR
is retained in the database and the class is linked in the database with the
associated jar. See retained JAR.

bytecode The compiled form of Java source code that is run by the Java VM.

class A class is the basic element of Java programs, containing a set of variable
declarations and methods. A class is the master copy that determines the
behavior and attributes of each instance of that class. See class instance.

class file A file of type “class” (for example, myclass.class) that contains the
compiled bytecode for a Java class. See Java file and Java archive (JAR).

class instance An single copy of each of the fields of the class. Class instances are
strongly typed by the class name.

datatype mapping Conversions between Java and SQL datatypes.

declared class The declared datatype of a Java-SQL data item. It is either the datatype of
the runtime value or a supertype of it.

document type
declaration (DTD)

In XML, every valid document has a DTD that describes the elements
available in that document type. A DTD can be embedded in the XML
document or referenced by it.

Extensible Markup
Language (XML)

A metalanguage designed for Web applications that lets you define your
own markup tags and attributes for different kinds of documents. XML is
a subset of SGML.

Extensible Style
Language (XSL)

A markup language designed to format XML documents into HTML or
other XML documents with different attributes and tags.

178

externalization An externalization of a Java instance is a byte stream that contains sufficient
information for the class to reconstruct the instance. Externalization is defined
by the externalizable interface. All Java-SQL classes must be either
externalizable or serializable. See serialization.

friendly A friendly method can be called only by methods of other classes in the same
package.

Hypertext Markup
Language (HTML)

A subset of SGML designed for the Web.

installed classes Installed Java classes and methods have been placed in the Adaptive Server
system by the installjava utility.

instance A particular copy of a class. An object that is contained in the Java VM. See
class instance.

interface A unique type of class that lets a class inherit particular methods.

Java archive (JAR) A platform-independent format for collecting classes in a single file.

Java Database
Connectivity (JDBC)

A Java-SQL API that is a standard part of the Java Class Libraries that control
Java application development. JDBC provides capabilities similar to those of
ODBC.

Java Development
Kit (JDK)

A toolset from Sun Microsystems that allows you to write and test Java
programs from the operating system.

Java file A file of type “java” (for example, myfile.java) that contains Java source code.
See class file and Java archive (JAR).

Java object An instance of a Java class that is contained in the storage of the Java VM. Java
instances that are referenced in SQL are either values of Java columns or Java
objects.

Java-SQL column A SQL column whose datatype is a Java-SQL class.

Java-SQL class A public Java class that has been installed in the Adaptive Server system. It
consists of a set of variable definitions and methods.

A class instance consists of an instance of each of the fields of the class. Class
instances are strongly typed by the class name.

A subclass is a class that is declared to extend (at most) to one other class. That
other class is called the direct superclass of the subclass. A subclass has all of
the variables and methods of its direct and indirect superclasses, and may be
used interchangeably with them.

 Glossary

179

Java-SQL datatype
mapping

Conversions between Java and SQL datatypes. See “Datatype Mapping
Between Java and SQL” on page 166.

Java-SQL variable A SQL variable whose datatype is a Java-SQL class.

Java Virtual Machine
(Java VM)

The Java interpreter that processes Java in the server. It is invoked by the SQL
implementation.

mappable A Java datatype is mappable if it is either:

• Listed in the first column of Table 7-3 on page 166, or

• A public Java-SQL class that is installed in the Adaptive Server system.

A SQL datatype is mappable if it is either:

• Listed in the first column of Table 7-4 on page 166, or

• A public Java-SQL class that is built-in or installed in the Adaptive Server
system.

A Java method is mappable if all of its parameter and result datatypes are
mappable.

method A set of instructions, contained in a Java class, for performing a task. A method
can be declared static, in which case it is called a class method. Otherwise, it is
an instance method. Class methods can be referenced by qualifying the method
name with either the class name or the name of an instance of the class.
Instance methods are referenced by qualifying the method name with the name
of an instance of the class. The method body of an instance method can
reference the variables local to that instance

narrowing
conversion

A Java operation for converting a reference to a class instance to a reference to
an instance of a subclass of that class. This operation is written in SQL with the
convert function. See also widening conversion.

package A package is a set of related classes. A class either specifies a package or is part
of an anonymous default package. A class can use Java import statements to
specify other packages whose classes can then be referenced.

procedure An SQL stored procedure, or a Java method with a void result type.

public Public fields and methods, as defined in Java.

retained JAR A JAR that is installed by the installjava utility with the -jar option. A retained
JAR is associated in the database with the classes it contains.

180

serialization A serialization of a Java instance is a byte stream containing sufficient
information to identify its class and reconstruct the instance. All Java-SQL
classes must be either externalizable or serializable. See externalization.

SQL92 The current SQL standard.

SQL3 The working draft for the next revision of the SQL standard.

SQL-Java datatype
mapping

See datatype mapping.

subclass A class below another class in a hierarchy. It inherits attributes and behavior
from classes above it. A subclass may be used interchangeably with its
superclasses. The class above the subclass is its direct superclass. See
superclass, narrowing conversion, and widening conversion.

superclass A class above one or more classes in a hierarchy. It passes attributes and
behavior to the classes below it. It may not be used interchangeably with its
subclasses. See subclass, narrowing conversion, and widening conversion.

synonymous
classes

Java-SQL classes that have the same fully qualified name but are installed in
different databases.

Unicode A 16-bit character set defined by ISO 10646 that supports many languages.

valid document In XML, a valid document has a DTD and adheres to it. It is also a well-formed
document.

variable In Java, a variable is local to a class, to instances of the class, or to a method.
A variable that is declared static is local to the class. Other variables declared
in the class are local to instances of the class. Those variables are called fields
of the class. A variable declared in a method is local to the method.

visible A Java class that has been installed in a SQL system is visible in SQL if it is
declared public; a field or method of a Java instance is visible in SQL if it is
both public and mappable. Visible classes, fields, and methods can be
referenced in SQL. Other classes, fields, and methods cannot, including classes
that are private, protected, or friendly, and fields and methods that are either
private, protected, or friendly, or are not mappable.

well-formed
document

In XML, the necessary characteristics of a well-formed document include: all
elements with both start and end tags, attribute values in quotes, all elements
properly nested.

widening conversion A Java operation for converting a reference to a class instance to a reference to
an instance of a superclass of that class. This operation is written in SQL with
the convert function. See also narrowing conversion.

Index

181

Symbols
, (comma)

in SQL statements xiv
{} (curly braces)

in SQL statements xiv
() (parentheses)

in SQL statements xiv
[] (square brackets)

in SQL statements xiv
>> (double angle)

to qualify Java fields and methods 33, 173

A
Additional information

about Java 9
about XML 84

alter table command
syntax 29

ANSI standards 4
Assignment properties

Java-SQL data items 37
Assignments 154
Attaching to a Java VM 141

B
Breaking

on a class method 144
on a line number 144
using conditions 144
using counts 144
when execution is not interrupted 145

Breakpoints 143

C
case expressions 43
Character sets 41

XML 87, 91
Class names 169
Class subtypes 42–44
Classes. See Java classes 8

Clients
bcp 157
bcp 157
isql 157

Client-side JDBC 6
Column datatypes

requirements 28
Column declarations 170
Column references 172
Comma (,)

in SQL statements xiv
Compile-time datatypes 43
Compiling Java code 17
Constructor method 31
Constructors 31, 49
Conventions

Java-SQL syntax xii
Transact-SQL syntax xiii

Conversions 156
narrowing 42
widening 42

convert function 42, 156
create table command

syntax 29
Creating tables 29
Curly braces ({})

in SQL statements xiv

D
Datatype conversions 156
Datatype mapping 40, 166–167
Datatypes

compile-time 43
Java classes 3
runtime 43

Debug.jar 140
Debugger 138

attaching to a Java VM 141
compiling classes for 140
disconnecting 146
how it works 138
options 142
requirements for using 138
starting 140

Index

182

wait mode 141
Debugger capabilities

browse classes 139
inspect and break on expressions 139
inspect and set variables 139
set break conditions 138
set breakpoints 138
trace execution 138

Debugger location 140
Debugger windows

breakpoints 141
calls 141
classes 142
connection 142
exceptions 142
inspection 142
locals 142
source 141

Debugging Java 137–151
Debugging tutorial 147–151

attaching to a Java VM 148
inspecting local variables 150
inspecting static variables 151
inspecting variables 149
loading source code 148
modifying local variables 151
source code 147
starting the debugger 147
stepping through source code 149

Deleting Java objects 31
Delimited identifiers 168
Disabling Java 16
distinct keyword 52
Document storage 92, 105–110, 123–130
Document Type Definition. See DTD
Double angle >>

to qualify Java fields and methods 33, 173
Downloading installed classes 23
Downloading installed JARs 23
DTD 88

elements of 89
internal 90

E
Element storage 92, 102–105, 120–123
Enabling Java 16
Equality operations 52
Exceptions 35
Extensible Markup Language. See XML
Extensible Style Language. See XSL
Externalization 170
extractjava utility 23

G
group by clause 52

H
Hybrid storage 93, 110–111, 130

I
Identifiers 168

delimited 168
Inserting Java objects 31
Installing Java classes 19–21
installjava utility 19

-f option 19
-j option 19
new option 20
syntax 19
update option 20

installjava utility 14
Instance methods 49
Inter-class arguments 58
Invoking Java methods 34
Invoking SQL from Java 161–165

J
JAR files

creating 18
installing 17

Index

183

retaining 19
Java API 7

accessing from SQL 7
supported packages 158–160
Sybase support for 8
unsupported packages 159

Java classes
as datatypes 3, 28
creating 17–18
installing 19–21
referencing other classes 21
retained 24
runtime 14
saving in JAR 17
supported 8
updating 20
user-defined 8, 14

Java code
compiling 17
writing 17

Java constructors 31
Java Development Kit 6
Java fields

referencing 33
Java in the database

advantages of 2
capabilities 3
key features 5
preparing for 13–24
questions and answers 5–10

Java instances
representing 36

Java methods
exceptions 35
invoking 34

Java runtime environment 14
Java VM 6, 14
java.sql 161
java.sql methods

unsupported 159
javac compiler 140
Java-SQL

creating tables 29
names 26

Java-SQL class names 169
Java-SQL classes

in multiple databases 55
installing 19–21

Java-SQL column declarations 170
Java-SQL column references 172
Java-SQL columns 37, 53

storage options 29
Java-SQL function results 37
Java-SQL identifiers 168
Java-SQL member references 173
Java-SQL method calls 175
Java-SQL objects

transferring to clients 156, 157
Java-SQL package names 169
Java-SQL parameters 37, 54
Java-SQL variable declarations 171
Java-SQL variables 37, 54

static 55
jConnect for JDBC 6
JDBC 65–82

accessing data 70
client-side 6, 68
concepts 67
connection defaults 69
DriverManager.getConnection() method 68
JDBCExamples class 70
obtaining a connection 72
permissions 69
server-side 6, 68
terminology 67

JDBC connections 72
JDBC drivers 15, 161

client-side 6, 68
jConnect 6
server-side 6, 68

JDBC interface 8
JDBC version support 15
JDBCExamples class 77–82

methods 71–76
overview 70

M
Mapping datatypes 166–167
Member references 173
Method calls 175

Index

184

datatype of 175
Method overloading 175
Methods

call by reference 53
exceptions 35
instance 49
invoking 34
runtime results 175
static 51
type 48, 49
void 49

Multiple databases 56

N
Names in Java-SQL 26

case 27
length 26

Narrowing conversions 42
Nulls in Java-SQL 45–47

arguments to methods 46
references to fields 45
references to methods 45
using convert functions 47

O
Obtaining connections 72
order by clauses 52
Ordering operations 52
OrderXml class 97–100

P
Package names 169
Parentheses ()

in SQL statements xiv
Parsers for XML 95
Permissions

Java 6, 26
JDBC 69

Persistent data items 37

Q
Questions and answers 5

R
Rearranging installed classes 24
Referencing

fields 33, 172
methods 172

Related documents ix
remove java command 24, 169
Removing classes 24
Removing JARs 24
Restrictions on Java in the database 9
ResultSet class 116–119
Runtime datatypes 43
Runtime environment 14
Runtime Java classes 14

location of 14

S
Sample classes 60–64

Address 60
Address2Line 61
JDBCExamples 70–82
JXml 94
location of 11
Misc 62
OrderXml 94, 97
ResultSet 112
ResultSetXml 94

Selecting Java objects 31
Serialization 170, 172
Server-side JDBC 6
set commands

allowed in Java methods 164
updating 50

sp_configure system procedure 16
sp_helpjava utility

syntax 22
SQL 33
Square brackets []

in SQL statements xiv

Index

185

Standards specifications 4
Static methods 51
Static variables 55
Storage options

in row 29
String data 48

zero length 48
String values

using 36
Subtypes 42
Supertypes 42
Symbols

in SQL statements xiv
Syntax conventions

Java-SQL xii
Transact-SQL xiii

T
Temporary databases 58
toString() method 36
Transact-SQL commands

allowed in Java methods 161
Transient data items 37

U
Unicode 48
union operator 52
Updating Java objects 31
User-defined classes

creating 17
User-defined functions 3
Using Java classes 25–59

V
Variable declarations 171
Variables 171

datatypes of 28
static 55
values assigned to 31

Viewing information

about installed classes 22
about installed JARs 22

W
where clauses 42, 45, 50, 53
Widening conversions 42
Work databases 58

X
XML 83–135

accessing 94
additional information 84
comparison with HTML 84
customizable example 112
overview 86
sample document 86
source code for sample classes 84

XML data
document storage 92
element storage 92

XML data operations
server-side 93

XML documents
character sets 91
DTDs 88
formatting for 90
invalid characters 130
parts of 87
valid 90
well-formed 88

XML operations
client-side 93

XML parsers 95
standard interfaces 95

XML storage options
pros and cons 93

XSL 90

Z
Zero-length strings 48

Index

186

